Skip to main content

Analysis of Enzyme Activities

  • Protocol
  • First Online:
Plant Metabolic Flux Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1090))

Abstract

The evaluation of enzyme activities, especially their capacities, represents an important step towards the modelling of biochemical pathways in living organisms. The implementation of microplate technology enables the determination of up to >50 enzymes in relatively large numbers of samples and in various biological materials. Most of these enzymes are involved in central metabolism and several pathways are entirely covered. Direct or indirect assays can be used, as well as highly sensitive assays, depending on the abundance of the enzymes under study. To exemplify such methods, protocols for UDP-glucose pyrophosphorylase (E.C. 2.7.7.9) operating in real time and for pyrophosphate:fructose-6-phosphate 1-phosphotransferase (E.C. 2.7.1.90) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Conflict of Interest The authors declare that they have no conflict of interest.

References

  1. Buchner E (1897) Alkoholische Gärung ohne Hefezellen. Berichte der deutschen chemischen Gesellschaft 30:1110–1113

    Article  CAS  Google Scholar 

  2. Kruckeber AL, Neuhaus HE, Feil R et al (1989) Decreased-activity mutants of phosphoglucose isomerase in the cytosol and chloroplast of Clarkia xantiana—Impact on mass-action ratios and fluxes to sucrose and starch, and estimation of flux control coefficients and elasticity coefficients. Biochem J 261:457–467

    Google Scholar 

  3. Stitt M, Schulze D (1994) Does Rubisco control the rate of photosynthesis and plant-growth—an exercise in molecular ecophysiology. Plant Cell Environ 17:465–487

    Article  CAS  Google Scholar 

  4. Poolman MG, Olcer H, Lloyd JC et al (2001) Computer modelling and experimental evidence for two steady states in the photosynthetic Calvin cycle. Eur J Biochem 268:2810–2816

    Article  PubMed  CAS  Google Scholar 

  5. Kacser HJ, Burns A (1973) The control of flux. Symp Soc Exp Biol 27:65–104

    PubMed  CAS  Google Scholar 

  6. Jenner HL (2003) Transgenesis and yield: what are our targets? Trends Biotechnol 21:190–192

    Article  PubMed  CAS  Google Scholar 

  7. Schomburg I, Chang A, Ebeling C et al (2004) BRENDA, the enzyme database: updates and major new developments. Nucleic Acids Res 32:D431–D433

    Article  PubMed  CAS  Google Scholar 

  8. Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437–445

    Article  PubMed  CAS  Google Scholar 

  9. Rowher JM (2012) Kinetic modelling of plant metabolic pathways. J Exp Bot 63:2275–2292

    Article  Google Scholar 

  10. Gardossi L, Poulsen PB, Ballesteros A et al (2010) Guidelines for reporting of biocatalytic reactions. Trends Biotechnol 28:171–180

    Article  PubMed  CAS  Google Scholar 

  11. Kaiser WM, Huber SC (2001) Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers. J Exp Bot 52:1981–1989

    Article  PubMed  CAS  Google Scholar 

  12. Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  13. Bergmeyer HU (1987) Methods of enzymatic analysis. VCH, Weinheim, Germany

    Google Scholar 

  14. Gibon Y, Blaesing OE, Hannemann J et al (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: Comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  PubMed  CAS  Google Scholar 

  15. Junker BH, Lonien J, Heady LE et al (2007) Parallel determination of enzyme activities and in vivo fluxes in Brassica napus embryos grown on organic or inorganic nitrogen source. Phytochem 68:2232–2242

    Article  CAS  Google Scholar 

  16. Gibon Y, Pyl E-T, Sulpice R et al (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ 32:859–874

    Article  PubMed  CAS  Google Scholar 

  17. Tschoep H, Gibon Y, Carillo P et al (2009) Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ 32:300–318

    Article  PubMed  CAS  Google Scholar 

  18. Gillespie KM, Rogers A, Ainsworth EA et al (2011) Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). J Exp Bot 62:2667–2678

    Article  PubMed  CAS  Google Scholar 

  19. Biais B, Bernillon S, Deborde C et al (2012) Precautions for harvest, sampling, storage, and transport of crop plant metabolomics samples. Methods Mol Biol 860:51–63, Clifton NJ ed

    Article  PubMed  CAS  Google Scholar 

  20. Rogers A, Gibon Y (2009) Enzyme kinetics: theory and practice. In: Svhwender J (ed) Plant metabolic networks. Springer, New York, pp 71–103. ISBN 978-0-38-778744-2

    Chapter  Google Scholar 

Download references

Acknowledgments

Financial support from INRA, Région Aquitaine, Eranet KBBE SAFQIM, Eranet Erasysbio+ FRIM, FP7 KBBE DROPS and SFR BIE is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Ménard, G., Biais, B., Prodhomme, D., Ballias, P., Gibon, Y. (2014). Analysis of Enzyme Activities. In: Dieuaide-Noubhani, M., Alonso, A. (eds) Plant Metabolic Flux Analysis. Methods in Molecular Biology, vol 1090. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-688-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-688-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-687-0

  • Online ISBN: 978-1-62703-688-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics