Skip to main content

Proteome Analysis of Adenovirus Using Mass Spectrometry

  • Protocol
  • First Online:
Adenovirus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1089))

Abstract

Analysis of proteins and their posttranslational modifications is important for understanding different biological events. For analysis of viral proteomes, an optimal protocol includes production of a highly purified virus that can be investigated with a high-resolving analytical method. In this Methods in Molecular Biology paper we describe a working strategy for how structural proteins in the Adenovirus particle can be studied using liquid chromatography–high-resolving mass spectrometry. This method provides information on the chemical composition of the virus particle. Further, knowledge about amino acids carrying modifications that could be essential for any part of the virus life cycle is collected. We describe in detail alternatives available for preparation of virus for proteome analysis as well as choice of mass spectrometric instrumentation suitable for this kind of analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flint SJ (2001) Adenovirus. Encyclopedia of life sciences. Wiley. http://www.els.net

  2. Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573–2604

    PubMed  CAS  Google Scholar 

  3. Stewart PL, Fuller SD, Burnett RM (1993) Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J 12:2589–2599

    PubMed  CAS  Google Scholar 

  4. van Oostrum J, Burnett RM (1985) Molecular composition of the adenovirus type 2 virion. J Virol 56:439–448

    PubMed  Google Scholar 

  5. Fuschiotti P, Schoehn G, Fender P, Fabry CM, Hewat EA, Chroboczek J et al (2006) Structure of the dodecahedral penton particle from human adenovirus type 3. J Mol Biol 356:510–520

    Article  PubMed  CAS  Google Scholar 

  6. Rux JJ, Kuser PR, Burnett RM (2003) Structural and phylogenetic analysis of adenovirus hexons by use of high-resolution x-ray crystallographic, molecular modeling, and sequence-based methods. J Virol 77:9553–9566

    Article  PubMed  CAS  Google Scholar 

  7. Zubieta C, Schoehn G, Chroboczek J, Cusack S (2005) The structure of the human adenovirus 2 penton. Mol Cell 17:121–135

    Article  PubMed  CAS  Google Scholar 

  8. Liu H, Jin L, Koh SB, Atanasov I, Schein S, Wu L et al (2010) Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 329:1038–1043

    Article  PubMed  CAS  Google Scholar 

  9. Reddy VS, Natchiar SK, Stewart PL, Nemerow GR (2010) Crystal structure of human adenovirus at 3.5 A resolution. Science 329:1071–1075

    Article  PubMed  CAS  Google Scholar 

  10. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242–247

    Article  PubMed  CAS  Google Scholar 

  11. Johnson RS, Davis MT, Taylor JA, Patterson SD (2005) Informatics for protein identification by mass spectrometry. Methods 35:223–236

    Article  PubMed  CAS  Google Scholar 

  12. Jensen ON (2006) Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol 7:391–403

    Article  PubMed  CAS  Google Scholar 

  13. Thingholm TE, Jensen ON, Larsen MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9:1451–1468

    Article  PubMed  CAS  Google Scholar 

  14. Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R (2007) Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4:231–237

    Article  PubMed  CAS  Google Scholar 

  15. Wisniewski JR, Zougman A, Kruger S, Mann M (2007) Mass spectrometric mapping of linker histone H1 variants reveals multiple acetylations, methylations, and phosphorylation as well as differences between cell culture and tissue. Mol Cell Proteomics 6:72–87

    PubMed  CAS  Google Scholar 

  16. Bergstrom Lind S, Artemenko KA, Elfineh L, Zhao Y, Bergquist J, Pettersson U (2012) The phosphoproteome of the adenovirus type 2 virion. Virology 433:253–261

    Article  PubMed  Google Scholar 

  17. Akusjarvi G, Philipson L, Pettersson U (1978) A protein kinase associated with adenovirus type 2. Virology 87:276–286

    Article  PubMed  CAS  Google Scholar 

  18. Axelrod N (1978) Phosphoproteins of adenovirus 2. Virology 87:366–383

    Article  PubMed  CAS  Google Scholar 

  19. Blair GE, Russell WC (1978) Identification of a protein kinase activity associated with human adenoviruses. Virology 86:157–166

    Article  PubMed  CAS  Google Scholar 

  20. Russell WC, Blair GE (1977) Polypeptide phosphorylation in adenovirus-infected cells. J Gen Virol 34:19–35

    Article  PubMed  CAS  Google Scholar 

  21. Tsuzuki J, Luftig RB (1983) The adenovirus type 5 capsid protein IIIa is phosphorylated during an early stage of infection of HeLa cells. Virology 129:529–533

    Article  PubMed  CAS  Google Scholar 

  22. Pettersson U, Sambrook J (1973) Amount of viral DNA in the genome of cells transformed by adenovirus type 2. J Mol Biol 73:125–130

    Article  PubMed  CAS  Google Scholar 

  23. Bergstrom Lind S, Artemenko KA, Pettersson U (2012) A strategy for identification of protein tyrosine phosphorylation. Methods 56:275–283

    Article  Google Scholar 

  24. Qoronfleh MW, Ren L, Emery D, Perr M, Kaboord B (2003) Use of immunomatrix methods to improve protein-protein interaction detection. J Biomed Biotechnol 2003:291–298

    Article  PubMed  Google Scholar 

  25. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–840

    Article  PubMed  CAS  Google Scholar 

  26. Na CH, Peng J (2012) Analysis of ubiquitinated proteome by quantitative mass spectrometry. Methods Mol Biol 893:417–429

    Article  PubMed  CAS  Google Scholar 

  27. McDonald CA, Yang JY, Marathe V, Yen TY, Macher BA (2009) Combining results from lectin affinity chromatography and glycocapture approaches substantially improves the coverage of the glycoproteome. Mol Cell Proteomics 8:287–301

    PubMed  CAS  Google Scholar 

  28. Dunn JD, Reid GE, Bruening ML (2010) Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev 29:29–54

    PubMed  CAS  Google Scholar 

  29. Zhou H, Watts JD, Aebersold R (2001) A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19:375–378

    Article  PubMed  CAS  Google Scholar 

  30. Goshe MB, Conrads TP, Panisko EA, Angell NH, Veenstra TD, Smith RD (2001) Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal Chem 73:2578–2586

    Article  PubMed  CAS  Google Scholar 

  31. Thingholm TE, Jorgensen TJ, Jensen ON, Larsen MR (2006) Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat Protoc 1:1929–1935

    Article  PubMed  CAS  Google Scholar 

  32. Zhang Z, Smith DL, Smith JB (2001) Multiple separations facilitate identification of protein variants by mass spectrometry. Proteomics 1:1001–1009

    Article  PubMed  CAS  Google Scholar 

  33. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  PubMed  CAS  Google Scholar 

  34. Kinter M, Sherman NE (2000) Protein sequencing and identification using tandem mass spectrometry. John Wiley & Sons, Inc., New York. ISBN-13: 978-0-471-32249-8

    Google Scholar 

  35. Schwartz D, Church GM (2010) Collection and motif-based prediction of phosphorylation sites in human viruses. Sci Signal 3:rs2

    Article  PubMed  Google Scholar 

  36. Gregori J, Villarreal L, Mendez O, Sanchez A, Baselga J, Villanueva J (2012) Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. J Proteomics 75:3938–3951

    Article  PubMed  CAS  Google Scholar 

  37. Yeung YG, Nieves E, Angeletti RH, Stanley ER (2008) Removal of detergents from protein digests for mass spectrometry analysis. Anal Biochem 382:135–137

    Article  PubMed  CAS  Google Scholar 

  38. Yu YQ, Gilar M, Lee PJ, Bouvier ES, Gebler JC (2003) Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal Chem 75:6023–6028

    Article  PubMed  CAS  Google Scholar 

  39. Jiménez CR, Huang L, Qiu Y, Burlingame AL (1998) Sample preparation for MALDI mass analysis of peptides and proteins. Curr Protoc Protein Sci 16.13.11–16.13.16

    Google Scholar 

Download references

Acknowledgement

This work was supported by the P.O. Zetterling Foundation (SBL), the Swedish Cancer Society (SBL), and the Kjell and Märta Beijer Foundation (UP). The authors wish to thank Lioudmila Elfineh for valuable discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lind, S.B., Artemenko, K.A., Pettersson, U. (2014). Proteome Analysis of Adenovirus Using Mass Spectrometry. In: Chillón, M., Bosch, A. (eds) Adenovirus. Methods in Molecular Biology, vol 1089. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-679-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-679-5_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-678-8

  • Online ISBN: 978-1-62703-679-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics