Skip to main content

Animal Models in Drug Development for MRSA

  • Protocol
  • First Online:
Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1085))

Abstract

One of the foremost challenges of drug discovery in any therapeutic area is that of solidifying the correlation between in vitro activity and clinical efficacy. Between these is the confirmation that affecting a particular target in vivo will lead to a therapeutic benefit. In antibacterial drug discovery, there is a key advantage from the start, since the targets are bacteria—therefore, it is simple to ascertain in vitro whether a drug has the desired effect, i.e., bacterial cell inhibition or killing, and to understand the mechanism by which that occurs. The downstream criteria, whether a compound reaches the infection site and achieves appropriately high levels to affect bacterial viability, can be evaluated in animal models of infection. In this way animal models of infection can be a highly valuable and predictive bridge between in vitro drug discovery and early clinical evaluation.

The Gram-positive pathogen Staphylococcus aureus causes a wide variety of infections in humans (Archer, Clin Infect Dis 26:1179–1181, 1998) and has been said to be able to infect every tissue type. Fortunately, over the years a great deal of effort has been expended toward developing infection models in rodents using this organism, with good success. This chapter will describe the advantages, methods, and outcome measurements of the rodent models most used in drug discovery for S. aureus. Mouse models will be the focus of this chapter, as they are the most economical and thus most commonly used, but a rat infection model is included as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jawetz E (1946) Dynamics of the action of penicillin in experimental animals; observations on mice. Arch Intern Med 77:1–15

    Article  CAS  Google Scholar 

  2. Wood WB Jr, Smith MR (1956) An experimental analysis of the curative action of penicillin in acute bacterial infections. I. The relationship of bacterial growth rates to the antimicrobial effect of penicillin. J Exp Med 103:487–498

    Article  PubMed  Google Scholar 

  3. Eagle H, Fleischman R, Musselman AD (1950) The effective concentrations of penicillin in vitro and in vivo for streptococci, pneumococci, and Treponema pallidum. J Bacteriol 59:625–643

    PubMed  CAS  Google Scholar 

  4. Eagle H, Fleischman R, Levy M (1953) “Continuous” vs. “discontinuous” therapy with penicillin: the effect of the interval between injections on therapeutic efficacy. N Eng J Med 248:481–488

    Article  CAS  Google Scholar 

  5. Eagle H, Fleischman R, Levy M (1953) On the duration of penicillin action to its concentration in the serum. J Lab Clin Med 41:122–132

    PubMed  CAS  Google Scholar 

  6. Eagle H, Fleischman R, Musselman AD (1950) The bactericidal action of penicillin in vivo: the participation of the host, and the slow recovery of the surviving organisms. Ann Intern Med 33:544–571

    Article  PubMed  CAS  Google Scholar 

  7. Skinner D, Keefer CS (1941) Significance of bacteremia caused by Staphylococcus aureus. Arch Intern Med 68:851–875

    Article  Google Scholar 

  8. Rammelkamp CH, Maxon T (1942) Resistance of Staphylococcus aureus to the action of penicillin. Proc R Soc Exp Biol Med 51:386–389

    Article  CAS  Google Scholar 

  9. Nuermberger E (2005) Murine models of pneumococcal pneumonia and their applicability to the study of tissue-directed antimicrobials. Pharmacotherapy 25(12 Pt 2):134S–139S

    Article  PubMed  Google Scholar 

  10. Druilhe P, Hagan P, Rook GAW (2002) The importance of models of infection in the study of disease resistance. Trends Microbiol 10(10):S38–S46

    Article  PubMed  CAS  Google Scholar 

  11. Zak O, O’Reilly T (1993) Animal infection models and ethics – the perfect infection model. J Antimicrob Chemother 31(Suppl D):193–205

    Article  PubMed  Google Scholar 

  12. Goodner K, Horsfall FL (1935) The protective action of type I antipneumococcus serum in mice. J Exp Med 62:359–374

    Article  PubMed  CAS  Google Scholar 

  13. Zak O, O’Reilly T (1990) Animal models as predictors of the safety and efficacy of antibiotics. Eur J Clin Microbiol Infect Dis 9(7):472–478

    Article  PubMed  CAS  Google Scholar 

  14. Zak O, Sande MA (eds) (1999) Handbook of animal models of infection. Experimental models in antimicrobial chemotherapy. Academic, London

    Google Scholar 

  15. Marra A, Girard D (2006) Primary rodent infection models for testing of compound efficacy in vivo. In: Barrett J (ed) Current protocols in pharmacology. Wiley, Rochester, MN

    Google Scholar 

  16. Dagan R (2003) Achieving bacterial eradication using pharmacokinetic/pharmacodynamic principles. Int J Infect Dis 7(Suppl 1):S21–S26

    Article  PubMed  Google Scholar 

  17. Fantin B, Leggett J, Ebert S et al (1991) Correlation between in vitro and in vivo activity of antimicrobial agents against Gram-negative bacilli in a murine infection model. Antimicrob Agents Chemother 35:1413–1422

    Article  PubMed  CAS  Google Scholar 

  18. Girard D, Finegan SM, Dunne MW et al (2005) Enhanced efficacy of single-dose versus multi-dose azithromycin regimens in preclinical infection models. J Antimicrob Chemother 56:365–371

    Article  PubMed  CAS  Google Scholar 

  19. Soley C, Arguedas A (2005) Single-dose azithromycin for the treatment of children with acute otitis media. Exp Rev Antiinfect Ther 3:707–717

    Article  CAS  Google Scholar 

  20. Albus A, Arbeit RD, Lee JC (1991) Virulence of Staphylococcus aureus mutants altered in Type 5 capsule production. Infect Immun 59:1008–1014

    PubMed  CAS  Google Scholar 

  21. Van den Bosch JF, de Graff J, MacLaren DM (1979) Virulence of Escherichia coli in experimental hematogenous pyelonephritis in mice. Infect Immun 25:68–74

    PubMed  Google Scholar 

  22. Wilding EI, Kim DY, Bryant AP et al (2000) Essentiality, expression and characterization of the Class II 3-hydroxy-3-methylglutaryl coenzyme A reductase of Staphylococcus aureus. J Bacteriol 182:5147–5152

    Article  PubMed  CAS  Google Scholar 

  23. Archer G (1998) Staphylococcus aureus: a well-armed pathogen. Clin Infect Dis 26:1179–1181

    Article  PubMed  CAS  Google Scholar 

  24. Gisby J, Bryant J (2000) Efficacy of a new cream formulation of mupirocin: comparison with oral and topical agents in experimental skin infections. Antimicrob Agents Chemother 44:255–260

    Article  PubMed  CAS  Google Scholar 

  25. Boon RJ, Beale AS (1987) Response of Streptococcus pyogenes to therapy with amoxicillin or amoxicillin-clavulanic acid in a mouse model of mixed infection caused by Staphylococcus aureus and Streptococcus pyogenes. Antimicrob Agents Chemother 31:1204–1209

    Article  PubMed  CAS  Google Scholar 

  26. Andes D, van Ogtrop ML, Peng J et al (2002) In vivo pharmacokinetics of a new oxazolidinone (linezolid). Antimicrob Agents Chemother 46:3484–3489

    Article  PubMed  CAS  Google Scholar 

  27. Arai S, Kobayashi S, Hayashi S et al (1988) Distribution of cefpirome (HR 810) to exudate in the croton oil-induced rat granuloma pouch and its therapeutic effects on experimental infections in the pouch. Antimicrob Agents Chemother 32:1396–1399

    Article  PubMed  CAS  Google Scholar 

  28. Jabes D, Candiani G, Romano G et al (2004) Efficacy of Dalbavancin against methicillin-resistant Staphylococcus aureus in the rat granuloma pouch infection model. Antimicrob Agents Chemother 48:1118–1123

    Article  PubMed  CAS  Google Scholar 

  29. Worlitzsch D, Kaygin H, Steinhuber A et al (2001) Effects of amoxicillin, gentamicin, and moxifloxacin on the hemolytic activity of Staphylococcus aureus in vitro and in vivo. Antimicrob Agents Chemother 45:196–202

    Article  PubMed  CAS  Google Scholar 

  30. Nishida M, Murakawa T (1977) Exudate levels and bactericidal activity of cefazolin in a new local infection system using rat granuloma pouches. Antimicrob Agents Chemother 11:1042–1048

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Marra, A. (2014). Animal Models in Drug Development for MRSA. In: Ji, Y. (eds) Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols. Methods in Molecular Biology, vol 1085. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-664-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-664-1_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-663-4

  • Online ISBN: 978-1-62703-664-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics