Skip to main content

Elementary Flux Modes, Flux Balance Analysis, and Their Application to Plant Metabolism

  • Protocol
  • First Online:
Plant Metabolism

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1083))

Abstract

In recent years the number of sequenced and annotated plant genomes has increased significantly, and novel approaches are required to retrieve valuable information from these data sets. The field of systems biology has accelerated the simulation and prediction of phenotypes derived from specific genotypic modifications under defined growth conditions. The biochemical potential of a cell from a specific plant tissue (e.g., seed endosperm) can be derived from its genome in the form of a mathematical model by the method of metabolic network reconstruction. This model can be further analyzed by studying its network properties, analyzing feasible pathway routes through the network, or simulating possible flux distributions of the network . Here, we describe two approaches for identification of all feasible routes through the network (elementary mode analysis) and for simulation of flux distribution in the network based on plant physiological uptake and excretion rates (flux balance analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hanson AD, Shanks JV (2002) Plant metabolic engineering – entering the S curve. Metab Eng 4:1–2

    Article  Google Scholar 

  2. Wiechert W (2001) Minireview: 13C metabolic flux analysis. Metab Eng 3:195–206

    Article  PubMed  CAS  Google Scholar 

  3. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17(2):53–60

    Article  PubMed  CAS  Google Scholar 

  4. Edwards JS, Ramakrishna R, Schilling CH, Palsson BØ (1999) Metabolic flux balance analysis. In: Lee SY, Papoutsakis ET (eds) Metabolic engineering. Marcel Dekker, New York, pp 13–57

    Google Scholar 

  5. Grafahrend-Belau E, Schreiber F, Koschützki D, Junker BH (2009) Flux balance analysis of barley seeds: a computational approach to study systemic properties of central metabolism. Plant Physiol 149:585–598

    Article  PubMed  CAS  Google Scholar 

  6. Pfeiffer T, Sanchez-Valdenebro I, Nuno JC, Montero F, Schuster S (1999) METATOOL: for studying metabolic networks. Bioinformatics 15(3):251–257

    Article  PubMed  CAS  Google Scholar 

  7. Hucka M et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 9(4):524–531

    Article  Google Scholar 

  8. Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25(20):2755–2757

    Article  PubMed  CAS  Google Scholar 

  9. Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7:109

    Article  PubMed  Google Scholar 

  10. Grafahrend-Belau E, Schreiber F, Heiner M, Sackmann A, Junker BH, Grunwald S, Speer A, Winder K, Koch I (2008) Modularization of biochemical networks based on classification of Petri net t-invariants. BMC Bioinformatics 9:90–116

    Article  PubMed  Google Scholar 

  11. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7:482

    Article  PubMed  Google Scholar 

  12. Pérès S, Beurton-Aimar M, Mazat JP (2006) Pathway classification of TCA cycle. IEE Proc Syst Biol 5:369–371

    Google Scholar 

  13. Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  PubMed  CAS  Google Scholar 

  14. Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB (2005) Light enables a very high efficiency of carbon storage in developing embryos of Rapeseed. Plant Physiol 138(4):2269–2279

    Article  PubMed  CAS  Google Scholar 

  15. Alonso AP, Goffman FD, Ohlrogge JB, Shachar-Hill Y (2007) Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos. Plant J 52(2):296–308

    Article  PubMed  CAS  Google Scholar 

  16. Edwards JS, Palsson BØ (2000) The Escherichia coli MG1655 in silico metabolic genotype: its definition characteristics, and capabilities. Proc Natl Acad Sci U S A 97:5528–5533

    Article  PubMed  CAS  Google Scholar 

  17. Schilling CH, Covert MW, Famili I, Church GM, Edwards JS, Palsson BØ (2002) Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol 184:4582–4593

    Article  PubMed  CAS  Google Scholar 

  18. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints of metabolic modelling to plant metabolism. Nat Rev Microbiol 2:886–897

    Article  PubMed  CAS  Google Scholar 

  19. Klukas C, Schreiber F (2010) Integration of -omics data and networks for biomedical research. J Integr Bioinform 7:112

    PubMed  Google Scholar 

  20. Koch I, Reisig W, Schreiber F (2010) Modeling in systems biology: the Petri Net approach. Springer Book Series Computational Biology, vol 16

    Google Scholar 

  21. Penning de Vries FWT, Brunsting AH, van Laar HH (1974) Products, requirements and efficiency of biosynthesis: a quantitative approach. J Theor Biol 45:339–377

    Article  PubMed  CAS  Google Scholar 

  22. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  PubMed  CAS  Google Scholar 

  23. Rolletschek H, Weschke W, Weber H, Wobus U, Borisjuk L (2004) Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains. J Exp Bot 55:1351–1359

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Lotz, K., Hartmann, A., Grafahrend-Belau, E., Schreiber, F., Junker, B.H. (2014). Elementary Flux Modes, Flux Balance Analysis, and Their Application to Plant Metabolism. In: Sriram, G. (eds) Plant Metabolism. Methods in Molecular Biology, vol 1083. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-661-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-661-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-660-3

  • Online ISBN: 978-1-62703-661-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics