Skip to main content

Time-Resolved Fluorescence Anisotropy Imaging

  • Protocol
  • First Online:
Fluorescence Spectroscopy and Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1076))

Abstract

Fluorescence can be characterized by its intensity, position, wavelength, lifetime, and polarization. The more of these features are acquired in a single measurement, the more can be learned about the sample, i.e., the microenvironment of the fluorescence probe. Polarization-resolved fluorescence lifetime imaging—time-resolved fluorescence anisotropy imaging, TR-FAIM—allows mapping of viscosity or binding or of homo-FRET which can indicate dimerization or generally oligomerization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only in the specific case of the cerulean fluorescent protein (CFP) the fluorescence lifetime has been reported to change due to homo-FRET [67].

References

  1. Bastiaens PIH, Pepperkok R (2000) Observing proteins in their natural habitat: the living cell. Trends Biochem Sci 25:631–637

    Article  PubMed  CAS  Google Scholar 

  2. Bastiaens PIH, Squire A (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9:48–52

    Article  PubMed  CAS  Google Scholar 

  3. Verveer PJ, Bastiaens PI (2008) Quantitative microscopy and systems biology: seeing the whole picture. Histochem Cell Biol 130(5):833–843

    Article  PubMed  CAS  Google Scholar 

  4. Wouters FS, Verveer PJ, Bastiaens PI (2001) Imaging biochemistry inside cells. Trends Cell Biol 11(5):203–211

    Article  PubMed  CAS  Google Scholar 

  5. Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K (2009) Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol 20:28–36

    Article  PubMed  CAS  Google Scholar 

  6. Förster T (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 33(6):166–175, translated into English by Klaus Suhling, J Biomed Opt 17(1), 011002, 2012

    Article  Google Scholar 

  7. Birch DJS (2011) Fluorescence detections and directions. Meas Sci Technol 22(5)

    Google Scholar 

  8. Piston DW (2010) Fluorescence anisotropy of protein complexes in living cells. Biophys J 99(6):1685–1686

    Article  PubMed  CAS  Google Scholar 

  9. Axelrod D (1979) Carbocyanine dye orientation in red cell membrane studied by microscopic fluorescence polarization. Biophys J 26(3):557–573

    Article  PubMed  CAS  Google Scholar 

  10. Ha T, Laurence TA, Chemla DS, Weiss S (1999) Polarization spectroscopy of single fluorescent molecules. J Phys Chem B 103(33):6839–6850

    Article  CAS  Google Scholar 

  11. Yan YL, Marriott G (2003) Fluorescence resonance energy transfer imaging microscopy and fluorescence polarization imaging microscopy. Methods Enzymol 360:561–580

    Article  PubMed  CAS  Google Scholar 

  12. Fisz JJ (2009) Another treatment of fluorescence polarization microspectroscopy and imaging. J Phys Chem A 113(15):3505–3516

    Article  PubMed  CAS  Google Scholar 

  13. Fisz JJ (2007) Another look at magic-angle-detected fluorescence and emission anisotropy decays in fluorescence microscopy. J Phys Chem A 111(50):12867–12870

    Article  PubMed  CAS  Google Scholar 

  14. Fisz JJ (2007) Fluorescence polarization spectroscopy at combined high-aperture excitation and detection: application to one-photon-excitation fluorescence microscopy. J Phys Chem A 111(35):8606–8621

    Article  PubMed  CAS  Google Scholar 

  15. Koshioka M, Sasaki K, Masuhara H (1995) Time-dependent fluorescence depolarization analysis in 3-dimensional microspectroscopy. Appl Spectrosc 49(2):224–228

    Article  CAS  Google Scholar 

  16. Fixler D, Namer Y, Yishay Y, Deutsch M (2006) Influence of fluorescence anisotropy on fluorescence intensity and lifetime measurement: theory, simulations and experiments. IEEE Trans Biomed Eng 53(6):1141–1152

    Article  PubMed  Google Scholar 

  17. Axelrod D (1989) Fluorescence polarization microscopy. Methods Cell Biol 30:333–352

    Article  PubMed  CAS  Google Scholar 

  18. Becker W (2005) Advanced time-correlated single photon counting techniques. In: Castleman AWJ et al (eds) Springer series in chemical physics, vol 81. Springer, NY, p 401

    Google Scholar 

  19. Suhling K, Siegel J, Lanigan PMP et al (2004) Time-resolved fluorescence anisotropy imaging applied to live cells. Opt Lett 29(6):584–586

    Article  PubMed  Google Scholar 

  20. Birch DJS (2001) Multiphoton excited fluorescence spectroscopy of biomolecular systems. Spectrochim Acta A Mol Biomol Spectrosc 57(11):2313–2336

    Article  PubMed  CAS  Google Scholar 

  21. Lidke DS, Nagy P, Barisas BG et al (2003) Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). Biochem Soc Trans 31(5):1020–1027

    Article  PubMed  CAS  Google Scholar 

  22. Dix JA, Verkman AS (1990) Mapping of fluorescence anisotropy in living cells by ratio imaging. Applications to cytoplasmic viscosity. Biophys J 57:231–240

    Article  PubMed  CAS  Google Scholar 

  23. Swaminathan R, Hoang CP, Verkman AS (1997) Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72:1900–1907

    Article  PubMed  CAS  Google Scholar 

  24. Gough AH, Taylor DL (1993) Fluorescence anisotropy imaging microscopy maps calmodulin-binding during cellular contraction and locomotion. J Cell Biol 121(5):1095–1107

    Article  PubMed  CAS  Google Scholar 

  25. Levitt JA, Chung PH, Kuimova MK et al (2011) Fluorescence anisotropy of molecular rotors. Chemphyschem 12(3):662–672

    Article  PubMed  CAS  Google Scholar 

  26. Bigelow CE, Conover DL, Foster TH (2003) Confocal fluorescence spectroscopy and anisotropy imaging system. Opt Lett 28(9):695–697

    Article  PubMed  Google Scholar 

  27. Foster TH, Pearson BD, Mitra S, Bigelow CE (2005) Fluorescence anisotropy imaging reveals localization of meso-tetrahydroxyphenyl chlorin in the nuclear envelope. Photochem Photobiol 81(6):1544–1547

    Article  PubMed  CAS  Google Scholar 

  28. Bigelow CE, Vishwasrao HD, Frelinger JG, Foster TH (2004) Imaging enzyme activity with polarization-sensitive confocal fluorescence microscopy. J Microsc (Oxf) 215:24–33

    Article  CAS  Google Scholar 

  29. Li W, Wang Y, Shao HR et al (2007) Probing rotation dynamics of biomolecules using polarization based fluorescence microscopy. Microsc Res Tech 70(4):390–395

    Article  PubMed  CAS  Google Scholar 

  30. Cao Z, Huang CC, Tan W (2006) Nuclease resistance of telomere-like oligonucleotides monitored in live cells by fluorescence anisotropy imaging. Anal Chem 78:1478–1484

    Article  PubMed  CAS  Google Scholar 

  31. Mattheyses AL, Hoppe AD, Axelrod D (2004) Polarized fluorescence resonance energy transfer microscopy. Biophys J 87(4):2787–2797

    Article  PubMed  CAS  Google Scholar 

  32. Rizzo MA, Piston DW (2005) High-contrast imaging of fluorescent protein FRET by fluorescence polarization microscopy. Biophys J 88(2):L14–L16

    Article  PubMed  CAS  Google Scholar 

  33. Matthews DR, Carlin LM, Ofo E et al (2010) Time-lapse FRET microscopy using fluorescence anisotropy. J Microsc (Oxf) 237(1):51–62

    Article  CAS  Google Scholar 

  34. Piston DW, Rizzo MA (2008) FRET by fluorescence polarization microscopy. Methods Cell Biol 85:415–30

    Article  PubMed  CAS  Google Scholar 

  35. Squire A, Verveer PJ, Rocks O, Bastiaens PI (2004) Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J Struct Biol 147(1):62–69

    Article  PubMed  CAS  Google Scholar 

  36. Keating SM, Wensel TG (1991) Nanosecond fluorescence microscopy. Emission kinetics of fura-2 in single cells. Biophys J 59(1):186–202

    Article  PubMed  CAS  Google Scholar 

  37. Spitz JA, Polard V, Maksimenko A et al (2007) Assessment of cellular actin dynamics by measurement of fluorescence anisotropy. Anal Biochem 367(1):95–103

    Article  PubMed  CAS  Google Scholar 

  38. Tramier M, Kemnitz K, Durieux C et al (2000) Restrained torsional dynamics of nuclear DNA in living proliferative mammalian cells. Biophys J 78(5):2614–2627

    Article  PubMed  CAS  Google Scholar 

  39. Benninger RKP, Hofmann O, McGinty J et al (2005) Time-resolved fluorescence imaging of solvent interactions in microfluidic devices. Opt Express 13(16):6275–6285

    Article  PubMed  CAS  Google Scholar 

  40. Clayton AHA, Hanley QS, Arndt-Jovin DJ et al (2002) Dynamic fluorescence anisotropy imaging microscopy in the frequency domain (rFLIM). Biophys J 83:1631–1649

    Article  PubMed  CAS  Google Scholar 

  41. Botchway SW, Lewis AM, Stubbs CD (2011) Development of fluorophore dynamics imaging as a probe for lipid domains in model vesicles and cell membranes. Eur Biophys J Biophys Lett 40(2):131–141

    Article  CAS  Google Scholar 

  42. Benninger RKP, Önfelt B, Neil MAA et al (2005) Fluorescence imaging of two-photon linear dichroism: cholesterol depletion disrupts molecular orientation in cell membranes. Biophys J 88:609–622

    Article  PubMed  CAS  Google Scholar 

  43. Reeve JE, Corbett AD, Boczarow I et al (2012) Probing the orientational distribution of dyes in membranes through multiphoton microscopy. Biophys J 103(5):907–917

    Article  PubMed  CAS  Google Scholar 

  44. Brack AS, Brandmeier BD, Ferguson RE et al (2004) Bifunctional rhodamine probes of myosin regulatory light chain orientation in relaxed skeletal muscle fibers. Biophys J 86(4):2329–2341

    Article  PubMed  CAS  Google Scholar 

  45. Mojzisova H, Olesiak J, Zielinski M et al (2009) Polarization-sensitive two-photon microscopy study of the organization of liquid-crystalline DNA. Biophys J 97(8):2348–2357

    Article  PubMed  CAS  Google Scholar 

  46. Dale RE, Eisinger J, Blumberg WE (1979) The orientational freedom of molecular probes. Biophys J 26:161–194

    Article  PubMed  CAS  Google Scholar 

  47. Dos Remedios CG, Moens PDJ (1995) Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. J Struct Biol 115(2):175–185

    Article  PubMed  Google Scholar 

  48. van der Meer BW (2002) Kappa-squared: from nuisance to new sense. J Biotechnol 82(3):181–96

    PubMed  Google Scholar 

  49. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21(11):1387–1396

    Article  PubMed  CAS  Google Scholar 

  50. Varma R, Mayor S (1998) GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394:798–801

    Article  PubMed  CAS  Google Scholar 

  51. Sharma P, Varma R, Sarasij RC et al (2004) Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116(4):577–589

    Article  PubMed  CAS  Google Scholar 

  52. Vishwasrao HD, Trifilieff P, Kandel ER (2012) In vivo imaging of the actin polymerization state with two-photon fluorescence anisotropy. Biophys J 102(5):1204–1214

    Article  PubMed  CAS  Google Scholar 

  53. van Ham TJ, Esposito A, Kumita JR et al (2010) Towards multiparametric fluorescent imaging of amyloid formation: studies of a YFP model of α-synuclein aggregation. J Mol Biol 395(3):627–642

    Article  PubMed  Google Scholar 

  54. Steinmeyer R, Harms GS (2009) Fluorescence resonance energy transfer and anisotropy reveals both hetero- and homo-energy transfer in the pleckstrin homology-domain and the parathyroid hormone-receptor. Microsc Res Tech 72(1):12–21

    Article  PubMed  CAS  Google Scholar 

  55. Gautier I, Tramier M, Durieux C et al (2001) Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins. Biophys J 80(6):3000–3008

    Article  PubMed  CAS  Google Scholar 

  56. Bader AN, Hofman EG, Voortman J et al (2009) Homo-FRET imaging enables quantification of protein cluster sizes with subcellular resolution. Biophys J 97(9):2613–2622

    Article  PubMed  CAS  Google Scholar 

  57. Bader AN, Hofman EG, van Bergen en Henegouwen PM, Gerritsen HC (2007) Imaging of protein cluster sizes by means of confocal time-gated fluorescence anisotropy microscopy. Opt Express 15(11): 6934–6945

    Google Scholar 

  58. Bader AN, Hoetzl S, Hofman EG et al (2011) Homo-FRET imaging as a tool to quantify protein and lipid clustering. Chemphyschem 12(3):475–483

    Article  PubMed  CAS  Google Scholar 

  59. Yeow EKL, Clayton AHA (2007) Enumeration of oligomerization states of membrane proteins in living cells by homo-FRET spectroscopy and microscopy: theory and application. Biophys J 92(9):3098–3104

    Article  PubMed  CAS  Google Scholar 

  60. Thaler C, Koushik SV, Puhl HL et al (2009) Structural rearrangement of CaMKII alpha catalytic domains encodes activation. Proc Natl Acad Sci U S A 106(15):6369–6374

    Article  PubMed  CAS  Google Scholar 

  61. Nguyen TA, Sarkar P, Veetil JV et al (2012) Fluorescence polarization and fluctuation analysis monitors subunit proximity, stoichiometry, and protein complex hydrodynamics. PLoS One 7(5)

    Google Scholar 

  62. Devauges V, Marquer C, Lecart S et al (2012) Homodimerization of amyloid precursor protein at the plasma membrane: a homoFRET study by time-resolved fluorescence anisotropy imaging. PLoS One 7(9)

    Google Scholar 

  63. Vogel SS, Thaler C, Blank PS, Koushik SV (2010) Time-resolved fluorescence anisotropy. In: Ammasi Periasamy RMC (ed.) Microscopy in biology and medicine. Chapman & Hall: Boca Raton, FL. pp. 245–288

    Google Scholar 

  64. Woolley P, Steinhäuser KG, Epe B (1987) Forster-type energy-transfer—simultaneous forward and reverse transfer between unlike fluorophores. Biophys Chem 26(2–3):367–374

    Article  PubMed  CAS  Google Scholar 

  65. Porter GB (1972) Reversible energy-transfer. Theor Chim Acta 24(2–3):265–270

    Article  CAS  Google Scholar 

  66. Willaert K, Loewenthal R, Sancho J et al (1992) Determination of the excited-state lifetimes of the tryptophan residues in barnase, via multifrequency phase fluorometry of tryptophan mutants. Biochemistry 31(3):711–716

    Article  PubMed  CAS  Google Scholar 

  67. Jung G, Ma YZ, Prall BS, Fleming GR (2005) Ultrafast fluorescence depolarisation in the yellow fluorescent protein due to its dimerization. Chemphyschem 6(8):1628–1632

    Article  PubMed  CAS  Google Scholar 

  68. Gratton E, Breusegem S, Sutin J et al (2003) Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods. J Biomed Opt 8(3):381–390

    Article  PubMed  Google Scholar 

  69. Suhling K (2006) Fluorescence lifetime imaging. In: Stephens D (ed) Cell imaging. Scion, Bloxham, pp 219–245

    Google Scholar 

  70. Suhling K, French PMW, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4:13–22

    Article  PubMed  CAS  Google Scholar 

  71. Esposito A, Bader AN, Schlachter SC et al (2011) Design and application of a confocal microscope for spectrally resolved anisotropy imaging. Opt Express 19(3):2546–2555

    Article  PubMed  CAS  Google Scholar 

  72. Philip J, Carlsson K (2003) Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging. J Opt Soc Am A 20(2):368–379

    Article  Google Scholar 

  73. Esposito A, Gerritsen HC, Wouters FS (2007) Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed. J Opt Soc Am A 24:3261

    Article  Google Scholar 

  74. Pelet S, Previte MJR, So PTC (2006) Comparing the quantification of Förster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. J Biomed Opt 11(3):34017

    Article  PubMed  Google Scholar 

  75. Gee ML, Lensun L, Smith TA, Scholes CA (2004) Time-resolved evanescent wave-induced fluorescence anisotropy for the determination of molecular conformational changes of proteins at an interface. Eur Biophys J Biophys Lett 33(2):130–139

    Article  CAS  Google Scholar 

  76. Smith TA, Gee ML, Scholes CA (2005) Time-resolved evanescent wave-induced fluorescence anisotropy measurements. In: Lakowicz CDGJR (ed) Reviews in fluorescence. Springer, New York, pp 245–271

    Google Scholar 

  77. Bruns T, Strauss WSL, Schneckenburger H (2008) Total internal reflection fluorescence lifetime and anisotropy screening of cell membrane dynamics. J Biomed Opt 13(4)

    Google Scholar 

  78. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708

    Article  PubMed  CAS  Google Scholar 

  79. Gradinaru CC, Marushchak DO, Samim M, Krull UJ (2010) Fluorescence anisotropy: from single molecules to live cells. Analyst 135(3):452–459

    Article  PubMed  CAS  Google Scholar 

  80. Yengo CM, Berger CL (2010) Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 10(6):731–737

    Article  PubMed  CAS  Google Scholar 

  81. Chan FTS, Kaminski CF, Schierle GSK (2011) HomoFRET fluorescence anisotropy imaging as a tool to study molecular self-assembly in live cells. Chemphyschem 12(3):500–509

    Article  PubMed  CAS  Google Scholar 

  82. Tramier M, Coppey-Moisan M (2008) Fluorescence anisotropy imaging microscopy for Homo-FRET in living cells. In: Kevin FS (ed) Methods in cell biology. Academic, New York, pp 395–414

    Google Scholar 

  83. Barber PR, Ameer-Beg SM, Gilbey J et al (2009) Multiphoton time-domain fluorescence lifetime imaging microscopy: practical application to protein–protein interactions using global analysis. J R Soc Interface 6:S93–S105

    Article  CAS  Google Scholar 

  84. Vishwasrao HD, Heikal AA, Kasischke KA, Webb WW (2005) Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy. J Biol Chem 280(26):25119–25126

    Article  PubMed  CAS  Google Scholar 

  85. Harris CM, Selinger BK (1979) Single-photon decay spectroscopy. 2. Pile-up problem. Aust J Chem 32(10):2111–2129

    Article  CAS  Google Scholar 

  86. Suhling K, McLoskey D, Birch DJS (1996) Multiplexed single-photon counting. II. The statistical theory of time-correlated measurements. Rev Sci Instrum 67(6):2238–2246

    Article  CAS  Google Scholar 

  87. vandeVen M, Ameloot M, Valeur B, Boens NI (2005) Pitfalls and their remedies in time-resolved fluorescence spectroscopy and microscopy. J Fluoresc 15(3):377–413

    Article  PubMed  CAS  Google Scholar 

  88. Cross AJ, Fleming GR (1984) Analysis of time-resolved fluorescence anisotropy decays. Biophys J 46:45–56

    Article  PubMed  CAS  Google Scholar 

  89. Birch DJS, Imhof RE, Dutch A (1984) Differential pulse fluorometry using matched photomultipliers—a new method of measuring fluorescence lifetimes. J Phys E Sci Instrum 17(5):417–418

    Article  CAS  Google Scholar 

  90. Birch DJS, Imhof RE, Dutch A (1984) Pulse fluorometry using simultaneous acquisition of fluorescence and excitation. Rev Sci Instrum 55(8):1255–1264

    Article  CAS  Google Scholar 

  91. Lidke KA, Rieger B, Lidke DS, Jovin TM (2005) The role of photon statistics in fluorescence anisotropy imaging. IEEE Trans Image Process 14(9):1237–1245

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Simon Ameer-Beg in the Randall Division for Cell and Molecular Biophysics at King’s College London for fruitful discussions and Dr Aleksandar Ivetic from the Membrane/Cytoskeleton Signalling Group in the Cardiovascular Division at King’s College London for the samples in Fig. 3. We would also like to thank Dr Steven Vogel from the National Institute on Alcohol Abuse and Alcoholism in Bethesda, USA, and editor Prof Yves Engelborghs for valuable comments on the manuscript. Finally, we would like to acknowledge the UK’s Medical Research Council (MRC) for funding.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suhling, K., Levitt, J., Chung, PH. (2014). Time-Resolved Fluorescence Anisotropy Imaging. In: Engelborghs, Y., Visser, A. (eds) Fluorescence Spectroscopy and Microscopy. Methods in Molecular Biology, vol 1076. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-649-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-649-8_22

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-648-1

  • Online ISBN: 978-1-62703-649-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics