Skip to main content

Gene Therapy for Parkinson’s Disease

  • Protocol
  • First Online:
Viral Vector Approaches in Neurobiology and Brain Diseases

Part of the book series: Neuromethods ((NM,volume 82))

  • 1372 Accesses

Abstract

Gene therapy is a promising future tool for treatment of Parkinson’s disease (PD) and several different strategies are currently being evaluated. Although many of these strategies have shown promising results in animal models of PD and parkinsonian patients, some have been less effective and caused adverse side effects. A vector system with high specificity and appropriate expression level of the transgene is needed to make gene therapy for PD as safe and beneficial as possible. The vector should also be relevant for the disease. Here, we present a method to design promoters relevant for PD, using microarray data from patients, and validation of these in vivo. The method also includes fine-tuning of promoter candidates by adding miRNA target sites to increase cell specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirik D et al (2002) Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci USA 99:4708–4713

    Article  PubMed  CAS  Google Scholar 

  2. Bjorklund T et al (2010) Optimized adeno-associated viral vector-mediated striatal DOPA delivery restores sensorimotor function and prevents dyskinesias in a model of advanced Parkinson’s disease. Brain 133:496–511

    Article  PubMed  Google Scholar 

  3. Carlsson T et al (2005) Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous L-DOPA delivery using rAAV vectors. Brain 128:559–569

    Article  PubMed  Google Scholar 

  4. Bankiewicz KS et al (2006) Long-term clinical improvement in MPTP-lesioned primates after gene therapy with AAV-hAADC. Mol Ther 14:564–570

    Article  PubMed  CAS  Google Scholar 

  5. Sanchez-Pernaute R et al (2001) Functional effect of adeno-associated virus mediated gene transfer of aromatic L-amino acid decarboxylase into the striatum of 6-OHDA-lesioned rats. Mol Ther 4:324–330

    Article  PubMed  CAS  Google Scholar 

  6. Muramatsu S et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735

    Article  PubMed  CAS  Google Scholar 

  7. Christine CW et al (2009) Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 73:1662–1669

    Article  PubMed  CAS  Google Scholar 

  8. Muramatsu S et al (2002) Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 13:345–354

    Article  PubMed  CAS  Google Scholar 

  9. Azzouz M et al (2002) Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic L-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 22: 10302–10312

    PubMed  CAS  Google Scholar 

  10. Oxford BioMedica (2011) ProSavin, an innvative gene-based therapy for Parkinson’s disease

    Google Scholar 

  11. Zibetti M et al (2011) Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord 26:2327–2334

    Article  PubMed  Google Scholar 

  12. Alvarez L et al (2009) Therapeutic efficacy of unilateral subthalamotomy in Parkinson’s disease: results in 89 patients followed for up to 36 months. J Neurol Neurosurg Psychiatry 80:979–985

    Article  PubMed  CAS  Google Scholar 

  13. Luo J et al (2002) Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 298:425–429

    Article  PubMed  CAS  Google Scholar 

  14. Lee B et al (2005) Enhanced expression of glutamate decarboxylase 65 improves symptoms of rat parkinsonian models. Gene Ther 12:1215–1222

    Article  PubMed  CAS  Google Scholar 

  15. Emborg ME et al (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509

    Article  PubMed  CAS  Google Scholar 

  16. Lewitt PA et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319

    Article  PubMed  CAS  Google Scholar 

  17. Kaplitt MG et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105

    Article  PubMed  CAS  Google Scholar 

  18. Nutt JG et al (2003) Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology 60:69–73

    Article  PubMed  CAS  Google Scholar 

  19. Patel NK et al (2005) Intraputamenal infusion of glial cell line-derived neurotrophic factor in PD: a two-year outcome study. Ann Neurol 57:298–302

    Article  PubMed  CAS  Google Scholar 

  20. Gill SS et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    Article  PubMed  CAS  Google Scholar 

  21. Hovland DN Jr et al (2007) Six-month continuous intraputamenal infusion toxicity study of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF in rhesus monkeys. Toxicol Pathol 35:1013–1029

    Article  PubMed  CAS  Google Scholar 

  22. Herzog CD et al (2009) Expression, bioactivity, and safety 1 year after adeno-associated viral vector type 2-mediated delivery of neurturin to the monkey nigrostriatal system support cere-120 for Parkinson's disease. Neurosurgery 64:602–612, discussion 612–3

    Article  PubMed  Google Scholar 

  23. Herzog CD et al (2008) Transgene expression, bioactivity, and safety of CERE-120 (AAV2-neurturin) following delivery to the monkey striatum. Mol Ther 16:1737–1744

    Article  PubMed  CAS  Google Scholar 

  24. Herzog CD et al (2007) Striatal delivery of CERE-120, an AAV2 vector encoding human neurturin, enhances activity of the dopaminergic nigrostriatal system in aged monkeys. Mov Disord 22:1124–1132

    Article  PubMed  Google Scholar 

  25. Marks WJ Jr et al (2010) Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial. Lancet Neurol 9(12):1164–1172

    Article  PubMed  CAS  Google Scholar 

  26. Bartus RT et al (2010) Bioactivity of AAV2-neurturin gene therapy (CERE-120): differences between Parkinson's disease and nonhuman primate brains. Mov Disord 26(1):27–36

    Article  PubMed  Google Scholar 

  27. Jakobsson J et al (2003) Targeted transgene expression in rat brain using lentiviral vectors. J Neurosci Res 73:876–885

    Article  PubMed  CAS  Google Scholar 

  28. Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11: 597–610

    PubMed  CAS  Google Scholar 

  29. Brown BD et al (2007) Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat Biotechnol 25:1457–1467

    Article  PubMed  CAS  Google Scholar 

  30. Colin A et al (2009) Engineered lentiviral vector targeting astrocytes in vivo. Glia 57: 667–679

    Article  PubMed  Google Scholar 

  31. Deo M et al (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235: 2538–2548

    Article  PubMed  CAS  Google Scholar 

  32. Lagos-Quintana M et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  PubMed  CAS  Google Scholar 

  33. Miller RM et al (2006) Robust dysregulation of gene expression in substantia nigra and striatum in Parkinson's disease. Neurobiol Dis 21: 305–313

    Article  PubMed  CAS  Google Scholar 

  34. Nakayama A et al (2003) Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1A promoter. J Biol Chem 278: 233–240

    Article  PubMed  CAS  Google Scholar 

  35. Duty S, Jenner P (2011) Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 164:1357–1391

    Article  PubMed  CAS  Google Scholar 

  36. Hioki H et al (2007) Efficient gene transduction of neurons by lentivirus with enhanced neuron-specific promoters. Gene Ther 14: 872–882

    Article  PubMed  CAS  Google Scholar 

  37. Brown BD, Naldini L (2009) Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet 10:578–585

    Article  PubMed  CAS  Google Scholar 

  38. Jakobsson J et al (2004) Lesion-dependent regulation of transgene expression in the rat brain using a human glial fibrillary acidic protein-lentiviral vector. Eur J Neurosci 19: 761–765

    Article  PubMed  Google Scholar 

  39. Rosenblad C et al (2000) In vivo protection of nigral dopamine neurons by lentiviral gene transfer of the novel GDNF-family member neublastin/artemin. Mol Cell Neurosci 15: 199–214

    Article  PubMed  CAS  Google Scholar 

  40. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4:721–726

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Christina Isaksson, Ulla Jarl, Anneli Josephsson, and Michael Sparrenius for their technical expertise. The work was supported by the Swedish Research Council (Grants # 2010-4496 and 2007-8626).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Wettergren, E.E., Quintino, L., Manfré, G., Lundberg, C. (2014). Gene Therapy for Parkinson’s Disease. In: Brambilla, R. (eds) Viral Vector Approaches in Neurobiology and Brain Diseases. Neuromethods, vol 82. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-610-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-610-8_10

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-609-2

  • Online ISBN: 978-1-62703-610-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics