Skip to main content

Exploiting Natural Variation in Arabidopsis

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Natural variation for many traits is present within the species Arabidopsis thaliana. This chapter describes the use of natural variation to elucidate genes underlying the regulation of quantitative traits. It deals with the development and use of mapping populations, the detection and handling of genetic markers, the phenotyping of quantitative traits, and, finally, QTL analyses. The focus of the chapter is on the use and development of recombinant inbred lines, but other types of segregating populations, including genome-wide association mapping in natural populations, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doebley JF et al (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  PubMed  CAS  Google Scholar 

  2. Izawa T et al (2003) Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr Opin Plant Biol 6:113–120

    Article  PubMed  CAS  Google Scholar 

  3. Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeogr 29:125–134

    Article  Google Scholar 

  4. Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

    Article  PubMed  CAS  Google Scholar 

  5. Kooke R et al (2012) Backcross populations and near isogenic lines. In: Methods in Molecular Biology: Quantitative Trait Loci (QTL) Analysis, Methods and Protocols (S.A. Rifkin ed), Humana press inc., Totowa, NJ. Methods Mol Biol 871:3–16

    Google Scholar 

  6. Keurentjes JJB et al (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905

    Article  PubMed  CAS  Google Scholar 

  7. Törjék O et al (2008) Construction and analysis of 2 reciprocal arabidopsis introgression line populations. J Hered 99:396–406

    Article  PubMed  Google Scholar 

  8. Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  PubMed  CAS  Google Scholar 

  9. Liu SC et al (1996) Genome-wide high-resolution mapping by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142:247–258

    PubMed  CAS  Google Scholar 

  10. Kover PX et al (2009) A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet 5:e1000551

    Article  PubMed  Google Scholar 

  11. Huang X et al (2011) Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc Natl Acad Sci 108:4488–4493

    Article  PubMed  CAS  Google Scholar 

  12. Balasubramanian S et al (2009) QTL mapping in new Arabidopsis thaliana advanced intercross-recombinant inbred lines. PLoS One 4:e4318

    Article  PubMed  Google Scholar 

  13. Brachi B et al (2010) Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet 6:e1000940

    Article  PubMed  Google Scholar 

  14. Bentink L et al (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci 107:4264–4269

    Article  Google Scholar 

  15. McMullen MD et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  PubMed  CAS  Google Scholar 

  16. Nordborg M et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Google Scholar 

  17. Kim S et al (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155

    Google Scholar 

  18. Atwell S et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    Article  PubMed  CAS  Google Scholar 

  19. Filiault DL, Maloof JN (2012) A genome-wide association study identifies variants underlying the Arabidopsis thaliana shade avoidance response. PLoS Genet 8:e1002589

    Article  PubMed  CAS  Google Scholar 

  20. Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  Google Scholar 

  21. Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    Google Scholar 

  22. Koornneef M et al (1983) Linkage map of Arabidopsis-thaliana. J Hered 74:265–272

    Google Scholar 

  23. Semagn K et al (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5:2540–2568

    CAS  Google Scholar 

  24. Borevitz JO et al (2003) Large-scale identification of single-feature polymorphisms in complex genomes. Genome Res 13:513–523

    Article  PubMed  CAS  Google Scholar 

  25. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141

    Article  PubMed  CAS  Google Scholar 

  26. Meinke DW et al (2003) A sequence-based map of Arabidopsis genes with mutant phenotypes. Plant Physiol 131:409–418

    Article  PubMed  CAS  Google Scholar 

  27. Cornforth TW, Long AD (2003) Inferences regarding the numbers and locations of QTLs under multiple-QTL models using interval mapping and composite interval mapping. Genet Res 82:139–149

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Molenaar, J.A., Keurentjes, J.J.B. (2014). Exploiting Natural Variation in Arabidopsis. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics