Skip to main content

Handling Arabidopsis Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses

  • Protocol
  • First Online:
Arabidopsis Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1062))

Abstract

Growing healthy plants is essential for the advancement of Arabidopsis thaliana (Arabidopsis) research. Over the last 20 years, the Arabidopsis Biological Resource Center (ABRC) has collected and developed a series of best-practice protocols, some of which are presented in this chapter. Arabidopsis can be grown in a variety of locations, growth media, and environmental conditions. Most laboratory accessions and their mutant or transgenic derivatives flower after 4–5 weeks and set seeds after 7–8 weeks, under standard growth conditions (soil, long day, 23 ºC). Some mutant genotypes, natural accessions, and Arabidopsis relatives require strict control of growth conditions best provided by growth rooms, chambers, or incubators. Other lines can be grown in less-controlled greenhouse settings. Although the majority of lines can be grown in soil, certain experimental purposes require utilization of sterile solid or liquid growth media. These include the selection of primary transformants, identification of homozygous lethal individuals in a segregating population, or bulking of a large amount of plant material. The importance of controlling, observing, and recording growth conditions is emphasized and appropriate equipment required to perform monitoring of these conditions is listed. Proper conditions for seed harvesting and preservation, as well as seed quality control, are also described. Plant transformation and genetic crosses, two of the methods that revolutionized Arabidopsis genetics, are introduced as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Knee E, Rivero L, Crist D, Grotewold E, Scholl R (2011) Germplasm and molecular resources. In: Schmidt R, Bancroft I (eds) Plant genetics and genomics: crops and models, vol 9, Genetics and genomics of the Brassicaceae. Springer, New York, pp 437–467

    Google Scholar 

  2. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  3. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene-expression in Arabidopsis-thaliana protoplasts isolated from cell-suspension cultures. Plant Physiol Biochem 30:123–128

    CAS  Google Scholar 

  4. Yamada H, Koizumi N, Nakamichi N, Kiba T, Yamashino T, Mizuno T (2004) Rapid response of Arabidopsis T87 cultured cells to cytokinin through His-to-Asp phosphorelay signal transduction. Biosci Biotechnol Biochem 68: 1966–1976

    Article  PubMed  CAS  Google Scholar 

  5. Nakamichi N, Matsushika A, Yamashino T, Mizuno T (2003) Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana. Plant Cell Physiol 44:360–365

    Article  PubMed  CAS  Google Scholar 

  6. Alonso AP, Piasecki RJ, Wang Y, LaClair RW, Shachar-Hill Y (2010) Quantifying the labeling and the levels of plant cell wall precursors using ion chromatography tandem mass spectrometry. Plant Physiol 153:915–924

    Article  PubMed  CAS  Google Scholar 

  7. Ogawa Y, Dansako T, Yano K, Sakurai N, Suzuki H, Aoki K, Noji M, Saito K, Shibata D (2008) Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics. Plant Cell Physiol 49:242–250

    Article  PubMed  CAS  Google Scholar 

  8. Menges M, Murray JA (2002) Synchronous Arabidopsis suspension cultures for analysis of cell-cycle gene activity. Plant J 30:203–212

    Article  PubMed  CAS  Google Scholar 

  9. Walters C (1998) Understanding the mechanisms and kinetics of seed aging. Seed Sci Res 8:223–244

    Article  CAS  Google Scholar 

  10. Walters C (1998) Ultra-dry seed storage. Seed Sci Res 8:1–73

    Article  Google Scholar 

  11. Rivero-Lepinckas L, Crist D, Scholl R (2006) Growth of plants and preservation of seeds. In: Salinas J, Sanchez-Serrano JJ (eds) Methods in molecular biology, vol 323, Arabidopsis protocols. Humana, Totowa, NJ, pp 3–12

    Google Scholar 

  12. Rao NK, Hanson J, Dulloo ME, Ghosh K, Nowell D, Larinde M (2006) Manual of seed handling in genebanks. Bioversity International, Rome

    Google Scholar 

  13. Hong TD, Ellis RH (1996) A protocol to determine seed storage behavior. IPGRI, Rome

    Google Scholar 

  14. FAO and IPGRI (1994) Genebank standards. FAO, IPGRI, Rome, pp 1–8

    Google Scholar 

  15. Ooms J, Leon-Kloosterziel KM, Bartels D, Koornneef M, Karssen CM (1993) Acquisition of desiccation tolerance and longevity in seeds of Arabidopsis thaliana (a comparative study using abscisic acid-insensitive abi3 mutants). Plant Physiol 102:1185–1191

    PubMed  CAS  Google Scholar 

  16. Hay FR, Mead A, Manger K, Wilson FJ (2003) One-step analysis of seed storage data and the longevity of Arabidopsis thaliana seeds. J Exp Bot 54:993–1011

    Article  PubMed  CAS  Google Scholar 

  17. Koornneef M (1994) Arabidopsis genetics. In: Meyerowitz E, Somerville C (eds) Arabidopsis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 89–120

    Google Scholar 

  18. Nasrallah J (2011) Self-incompatibility in the brassicaceae. In: Schmidt R, Bancroft I (eds) Plant genetics and genomics: crops and models, vol 9, Genetics and genomics of the Brassicaceae. Springer, New York, pp 389–411

    Google Scholar 

  19. Weigel D, Glazebrook J (2002) Genetic analysis of mutants. In: Arabidopsis—a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 41–53

    Google Scholar 

  20. Feldmann KA, Marks MD (1987) Agrobacterium-mediated transformation of germinating-seeds of Arabidopsis-thaliana—a non-tissue culture approach. Mol Gen Genet 208:1–9

    Article  CAS  Google Scholar 

  21. Bechtold N, Ellis J, Pelletier G (1993) In-Planta Agrobacterium-mediated gene-transfer by infiltration of adult Arabidopsis-thaliana plants. C R Acad Sci III–VIe 316:1194–1199

    CAS  Google Scholar 

  22. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  23. Valvekens D, Vanmontagu M, Vanlijsebettens M (1988) Agrobacterium-tumefaciens-mediated transformation of Arabidopsis-thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  24. Schenk N, Hsiao K-C, Bornman CH (1991) Avoidance of precipitation and carbohydrate breakdown in autoclaved plant tissue culture media. Plant Cell Rep 10:115–119

    Article  CAS  Google Scholar 

  25. Pischke MS, Huttlin EL, Hegeman AD, Sussman MR (2006) A transcriptome-based characterization of habituation in plant tissue culture. Plant Physiol 140:1255–1278

    Article  PubMed  CAS  Google Scholar 

  26. Estelle MA, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with altered morphology. Mol Gen Genet 206:200–206

    Article  CAS  Google Scholar 

  27. Weigel D, Glazebrook J (2002) Arabidopsis: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  28. Zhang X, Henriques R, Lin SS, Niu QW, Chua NH (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rivero, L., Scholl, R., Holomuzki, N., Crist, D., Grotewold, E., Brkljacic, J. (2014). Handling Arabidopsis Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses. In: Sanchez-Serrano, J., Salinas, J. (eds) Arabidopsis Protocols. Methods in Molecular Biology, vol 1062. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-580-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-580-4_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-579-8

  • Online ISBN: 978-1-62703-580-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics