Skip to main content

Resolution of Budding Yeast Chromosomes Using Pulsed-Field Gel Electrophoresis

  • Protocol
  • First Online:
DNA Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1054))

Abstract

Pulsed-field gel electrophoresis (PFGE) is a technique that resolves chromosome-sized DNA molecules in an agarose gel. As well as DNA mapping and karyotyping applications, PFGE techniques are well adapted to follow DNA rearrangements over time in a quantitative manner. Because of the very large sizes of the DNA molecules analyzed, DNA preparation, electrophoresis, and Southern blotting processes present unique challenges in PFGE experiments. In this chapter, we describe a robust PFGE protocol covering the preparation of intact Saccharomyces cerevisiae chromosomal DNA, specific running conditions for the resolution of small, medium- and large-sized chromosomes and their by-products, and basic Southern blotting and hybridization instructions for the analysis of these molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carle GF, Olson MV (1984) Separation of chromosomal DNA molecules from yeast by orthogonal-field-alternation gel electrophoresis. Nucleic Acids Res 12:5647–5664

    Article  PubMed  CAS  Google Scholar 

  2. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75

    Article  PubMed  CAS  Google Scholar 

  3. Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234:1582–1585

    Article  PubMed  CAS  Google Scholar 

  4. Orbach MJ, Vollrath D, Davis RW, Yanofsky C (1988) An electrophoretic karyotype of Neurospora crassa. Mol Cell Biol 8:1469–1473

    PubMed  CAS  Google Scholar 

  5. Clark SM, Lai E, Birren BW, Hood L (1988) A novel instrument for separating large DNA molecules with pulsed homogeneous electric fields. Science 241:1203–1205

    Article  PubMed  CAS  Google Scholar 

  6. Game JC (1992) Pulsed-field gel analysis of the pattern of DNA double-strand breaks in the Saccharomyces genome during meiosis. Dev Genet 13:485–497

    Article  PubMed  CAS  Google Scholar 

  7. Choy JS, Kron SJ (2002) NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol 22:8215–8225

    Article  PubMed  CAS  Google Scholar 

  8. Lundin C, North M, Erixon K, Walters K, Jenssen D, Goldman AS, Helleday T (2005) Methyl methanesulfonate (MMS) produces heat-labile DNA damage but no detectable in vivo DNA double-strand breaks. Nucleic Acids Res 33:3799–3811

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi T, Ganley AR (2005) Recombination regulation by transcription-induced cohesin dissociation in rDNA repeats. Science 309:1581–1584

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830

    Article  PubMed  CAS  Google Scholar 

  11. Kegel A, Betts-Lindroos H, Kanno T, Jeppsson K, Strom L, Katou Y, Itoh T, Shirahige K, Sjogren C (2011) Chromosome length influences replication-induced topological stress. Nature 471:392–396

    Article  PubMed  CAS  Google Scholar 

  12. Schollaert KL, Poisson JM, Searle JS, Schwanekamp JA, Tomlinson CR, Sanchez Y (2004) A role for Saccharomyces cerevisiae Chk1p in the response to replication blocks. Mol Biol Cell 15:4051–4063

    Article  PubMed  CAS  Google Scholar 

  13. Houseley J, Kotovic K, El Hage A, Tollervey D (2007) Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 26:4996–5006

    Article  PubMed  CAS  Google Scholar 

  14. McKee AH, Kleckner N (1997) A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–816

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The setup of the PFGE protocol was initially started in the laboratory of Professor David Tollervey.

A.E.H. is a research fellow in the laboratory of Professor David Tollervey who is funded by the Welcome Trust. J.H. is funded by Wellcome Trust grant 088335.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Hage, A.E., Houseley, J. (2013). Resolution of Budding Yeast Chromosomes Using Pulsed-Field Gel Electrophoresis. In: Makovets, S. (eds) DNA Electrophoresis. Methods in Molecular Biology, vol 1054. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-565-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-565-1_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-564-4

  • Online ISBN: 978-1-62703-565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics