Skip to main content

Exploring Mechanisms of Synaptic Plasticity Using Exogenous Expression of Proteins at the Sensory-to-Motor Neuron Synapse of Aplysia

  • Protocol
  • First Online:
Multidisciplinary Tools for Investigating Synaptic Plasticity

Part of the book series: Neuromethods ((NM,volume 81))

  • 749 Accesses

Abstract

The use of expression constructs to drive exogenous expression of proteins has long been a pillar of cell and molecular biology. In this chapter, we will focus on two particular uses for this technique in studying synaptic plasticity, using Aplysia californica as a model: first, the use of overexpressed fluorescent proteins as reporters for live imaging of signal transduction pathways that are activated during synaptic plasticity and, second, exogenous expression of dominant negatives to test the role of specific signaling pathways in synaptic plasticity. The advantages and disadvantages of these techniques will be discussed followed by detailed experimental methods describing how to use these techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  2. Byrne J, Castellucci V, Kandel ER (1974) Receptive fields and response properties of mechanoreceptor neurons innervating siphon skin and mantle shelf in Aplysia. J Neurophysiol 37:1041–1064

    PubMed  CAS  Google Scholar 

  3. Dubuc B, Castellucci VF (1991) Receptive fields and properties of a new cluster of mechanoreceptor neurons innervating the mantle region and the branchial cavity of the marine mollusk Aplysia californica. J Exp Biol 156: 315–334

    PubMed  CAS  Google Scholar 

  4. Byrne JH (1980) Neural circuit for inking behavior in Aplysia californica. J Neurophysiol 43:896–911

    PubMed  CAS  Google Scholar 

  5. Frost WN, Clark GA, Kandel ER (1988) Parallel processing of short-term memory for sensitization in Aplysia. J Neurobiol 19:297–334

    Article  PubMed  CAS  Google Scholar 

  6. Castellucci V, Pinsker H, Kupfermann I, Kandel ER (1970) Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science 167: 1745–1748

    Article  PubMed  CAS  Google Scholar 

  7. Kupfermann I, Carew TJ, Kandel ER (1974) Local, reflex, and central commands controlling gill and siphon movements in Aplysia. J Neurophysiol 37:996–1019

    PubMed  CAS  Google Scholar 

  8. Castellucci VF, Kandel ER (1974) A quantal analysis of the synaptic depression underlying habituation of the gill-withdrawal reflex in Aplysia. Proc Natl Acad Sci U S A 71: 5004–5008

    Article  PubMed  CAS  Google Scholar 

  9. Castellucci V, Kandel ER (1976) Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science 194:1176–1178

    Article  PubMed  CAS  Google Scholar 

  10. Perlman AJ (1979) Central and peripheral control of siphon-withdrawal reflex in Aplysia californica. J Neurophysiol 42:510–529

    PubMed  CAS  Google Scholar 

  11. Carew TJ, Castellucci VF, Kandel ER (1971) An analysis of dishabituation and sensitization of the gill-withdrawal reflex in Aplysia. Int J Neurosci 2:79–98

    Article  PubMed  CAS  Google Scholar 

  12. Frost WN, Castellucci VF, Hawkins RD, Kandel ER (1985) Monosynaptic connections made by the sensory neurons of the gill- and siphon-withdrawal reflex in Aplysia participate in the storage of long-term memory for sensitization. Proc Natl Acad Sci U S A 82:8266–8269

    Article  PubMed  CAS  Google Scholar 

  13. Castellucci VF, Frost WN, Goelet P, Montarolo PG, Schacher S, Morgan JA, Blumenfeld H, Kandel ER (1986) Cell and molecular analysis of long-term sensitization in Aplysia. J Physiol Paris 81:349–357

    PubMed  CAS  Google Scholar 

  14. Byrne JH, Castellucci VF, Kandel ER (1978) Contribution of individual mechanoreceptor sensory neurons to defensive gill-withdrawal reflex in Aplysia. J Neurophysiol 41:418–431

    PubMed  CAS  Google Scholar 

  15. Glanzman DL, Kandel ER, Schacher S (1989) Identified target motor neuron regulates neurite outgrowth and synapse formation of aplysia sensory neurons in vitro. Neuron 3:441–450

    Article  PubMed  CAS  Google Scholar 

  16. Schacher S, Montarolo PG (1991) Target-dependent structural changes in sensory neurons of Aplysia accompany long-term heterosynaptic inhibition. Neuron 6:679–690

    Article  PubMed  CAS  Google Scholar 

  17. Rayport SG, Schacher S (1986) Synaptic plasticity in vitro: cell culture of identified Aplysia neurons mediating short-term habituation and sensitization. J Neurosci 6:759–763

    PubMed  CAS  Google Scholar 

  18. Montarolo PG, Goelet P, Castellucci VF, Morgan J, Kandel ER, Schacher S (1986) A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia. Science 234:1249–1254

    Article  PubMed  CAS  Google Scholar 

  19. Antonov I, Antonova I, Kandel ER, Hawkins RD (2003) Activity-dependent presynaptic facilitation and hebbian LTP are both required and interact during classical conditioning in Aplysia. Neuron 37:135–147

    Article  PubMed  CAS  Google Scholar 

  20. Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH (2002) Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science 296:1706–1709

    Article  PubMed  CAS  Google Scholar 

  21. Antonov I, Antonova I, Kandel ER, Hawkins RD (2001) The contribution of activity-dependent synaptic plasticity to classical conditioning in Aplysia. J Neurosci 21:6413–6422

    PubMed  CAS  Google Scholar 

  22. Miniaci MC, Kim JH, Puthanveettil SV, Si K, Zhu H, Kandel ER, Bailey CH (2008) Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 59:1024–1036

    Article  PubMed  CAS  Google Scholar 

  23. Dash PK, Hochner B, Kandel ER (1990) Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 345:718–721

    Article  PubMed  CAS  Google Scholar 

  24. Bourtchuladze R, Frenguelli B, Blendy J, Cioffi D, Schutz G, Silva AJ (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59–68

    Article  PubMed  CAS  Google Scholar 

  25. Martin KC, Michael D, Rose JC, Barad M, Casadio A, Zhu H, Kandel ER (1997) MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18:899–912

    Article  PubMed  CAS  Google Scholar 

  26. English JD, Sweatt JD (1997) A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J Biol Chem 272:19103–19106

    Article  PubMed  CAS  Google Scholar 

  27. Casadio A, Martin KC, Giustetto M, Zhu H, Chen M, Bartsch D, Bailey CH, Kandel ER (1999) A transient, neuron-wide form of CREB-mediated long-term facilitation can be stabilized at specific synapses by local protein synthesis. Cell 99:221–237

    Article  PubMed  CAS  Google Scholar 

  28. Tang SJ, Reis G, Kang H, Gingras AC, Sonenberg N, Schuman EM (2002) A rapamycin-sensitive signaling pathway contributes to long-term synaptic plasticity in the hippocampus. Proc Natl Acad Sci U S A 99:467–472

    Article  PubMed  CAS  Google Scholar 

  29. Yin JC, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn WG, Tully T (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79:49–58

    Article  PubMed  CAS  Google Scholar 

  30. Bassford P, Beckwith J, Berman M, Brickman E, Casadaban M, Guarente L, Saint-Girons I, Sarthy A, Schwartz M, Shuman H, Silhavy T (1978) Genetic fusions of the lac operon: a new approach to the study of biological processes. In: Miller JH, Reznikoff WS (eds) The operon. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 245–262

    Google Scholar 

  31. Choi JH, Lee JA, Yim SW, Lim CS, Lee CH, Lee YD, Bartsch D, Kandel ER, Kaang BK (2003) Using an aplysia two-hybrid system to examine the interactions between transcription factors involved in long-term facilitation in the nervous system of aplysia. Learn Mem 10:40–43

    Article  PubMed  Google Scholar 

  32. Lee JA, Kim HK, Kim KH, Han JH, Lee YS, Lim CS, Chang DJ, Kubo T, Kaang BK (2001) Overexpression of and RNA interference with the CCAAT enhancer-binding protein on long-term facilitation of Aplysia sensory to motor synapses. Learn Mem 8:220–226

    Article  PubMed  Google Scholar 

  33. Yim SJ, Lee YS, Lee JA, Chang DJ, Han JH, Kim H, Park H, Jun H, Kim VN, Kaang BK (2006) Regulation of ApC/EBP mRNA by the Aplysia AU-rich element-binding protein, ApELAV, and its effects on 5-hydroxytryptamine-induced long-term facilitation. J Neurochem 98:420–429

    Article  PubMed  CAS  Google Scholar 

  34. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  35. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    Article  PubMed  CAS  Google Scholar 

  36. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  37. Inouye S, Tsuji FI (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett 341:277–280

    Article  PubMed  CAS  Google Scholar 

  38. Deliolanis NC, Kasmieh R, Wurdinger T, Tannous BA, Shah K, Ntziachristos V (2008) Performance of the red-shifted fluorescent proteins in deep-tissue molecular imaging applications. J Biomed Opt 13:044008

    Article  PubMed  CAS  Google Scholar 

  39. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, Miyawaki A (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20:87–90

    Article  PubMed  CAS  Google Scholar 

  40. Jayaraman S, Haggie P, Wachter RM, Remington SJ, Verkman AS (2000) Mechanism and cellular applications of a green fluorescent protein-based halide sensor. J Biol Chem 275:6047–6050

    Article  PubMed  CAS  Google Scholar 

  41. Sheridan DL, Robert A, Cho CH, Howe JR, Hughes TE (2006) Regions of alpha-amino-5-methyl-3-hydroxy-4-isoxazole propionic acid receptor subunits that are permissive for the insertion of green fluorescent protein. Neuroscience 141:837–849

    Article  PubMed  CAS  Google Scholar 

  42. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci U S A 99:7877–7882

    Article  PubMed  CAS  Google Scholar 

  43. Mizuno H, Sawano A, Eli P, Hama H, Miyawaki A (2001) Red fluorescent protein from Discosoma as a fusion tag and a partner for fluorescence resonance energy transfer. Biochemistry 40:2502–2510

    Article  PubMed  CAS  Google Scholar 

  44. Jakobs S, Subramaniam V, Schonle A, Jovin TM, Hell SW (2000) EFGP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS Lett 479:131–135

    Article  PubMed  CAS  Google Scholar 

  45. Yanushevich YG, Staroverov DB, Savitsky AP, Fradkov AF, Gurskaya NG, Bulina ME, Lukyanov KA, Lukyanov SA (2002) A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS Lett 511:11–14

    Article  PubMed  CAS  Google Scholar 

  46. Tao W, Evans BG, Yao J, Cooper S, Cornetta K, Ballas CB, Hangoc G, Broxmeyer HE (2007) Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not. Stem Cells 25:670–678

    Article  PubMed  CAS  Google Scholar 

  47. Strack RL, Strongin DE, Bhattacharyya D, Tao W, Berman A, Broxmeyer HE, Keenan RJ, Glick BS (2008) A noncytotoxic DsRed variant for whole-cell labeling. Nat Methods 5:955–957

    Article  PubMed  CAS  Google Scholar 

  48. Strack RL, Hein B, Bhattacharyya D, Hell SW, Keenan RJ, Glick BS (2009) A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochemistry 48:8279–8281

    Article  PubMed  CAS  Google Scholar 

  49. Strack RL, Bhattacharyya D, Glick BS, Keenan RJ (2009) Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling. BMC Biotechnol 9:32

    Article  PubMed  CAS  Google Scholar 

  50. Yanow SK, Manseau F, Hislop J, Castellucci VF, Sossin WS (1998) Biochemical pathways by which serotonin regulates translation in the nervous system of Aplysia. J Neurochem 70:572–583

    Article  PubMed  CAS  Google Scholar 

  51. Hu JY, Glickman L, Wu F, Schacher S (2004) Serotonin regulates the secretion and autocrine action of a neuropeptide to activate MAPK required for long-term facilitation in Aplysia. Neuron 43:373–385

    Article  PubMed  CAS  Google Scholar 

  52. Hu JY, Wu F, Schacher S (2006) Two signaling pathways regulate the expression and secretion of a neuropeptide required for long-term facilitation in Aplysia. J Neurosci 26:1026–1035

    Article  PubMed  CAS  Google Scholar 

  53. Si K, Giustetto M, Etkin A, Hsu R, Janisiewicz AM, Miniaci MC, Kim JH, Zhu H, Kandel ER (2003) A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 115:893–904

    Article  PubMed  CAS  Google Scholar 

  54. Weatherill DB, Dyer J, Sossin WS (2010) Ribosomal protein S6 kinase is a critical downstream effector of the target of rapamycin complex 1 for long-term facilitation in Aplysia. J Biol Chem 285:12255–12267

    Article  PubMed  CAS  Google Scholar 

  55. Kelleher RJ III, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116: 467–479

    Article  PubMed  CAS  Google Scholar 

  56. Alarcon JM, Hodgman R, Theis M, Huang YS, Kandel ER, Richter JD (2004) Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem 11:318–327

    Article  PubMed  Google Scholar 

  57. Antion MD, Merhav M, Hoeffer CA, Reis G, Kozma SC, Thomas G, Schuman EM, Rosenblum K, Klann E (2008) Removal of S6K1 and S6K2 leads to divergent alterations in learning, memory, and synaptic plasticity. Learn Mem 15:29–38

    Article  PubMed  Google Scholar 

  58. Antion MD, Hou L, Wong H, Hoeffer CA, Klann E (2008) mGluR-dependent long-term depression is associated with increased phosphorylation of S6 and synthesis of elongation factor 1A but remains expressed in S6K-deficient mice. Mol Cell Biol 28:2996–3007

    Article  PubMed  CAS  Google Scholar 

  59. Gobert D, Topolnik L, Azzi M, Huang L, Badeaux F, Desgroseillers L, Sossin WS, Lacaille JC (2008) Forskolin induction of late-LTP and up-regulation of 5′ TOP mRNAs translation via mTOR, ERK, and PI3K in hippocampal pyramidal cells. J Neurochem 106:1160–1174

    Article  PubMed  CAS  Google Scholar 

  60. Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63:803–817

    Article  PubMed  CAS  Google Scholar 

  61. Lebeau G, Maher-Laporte M, Topolnik L, Laurent CE, Sossin W, Desgroseillers L, Lacaille JC (2008) Staufen1 regulation of protein synthesis-dependent long-term potentiation and synaptic function in hippocampal pyramidal cells. Mol Cell Biol 28:2896–2907

    Article  PubMed  CAS  Google Scholar 

  62. Park S, Park JM, Kim S, Kim JA, Shepherd JD, Smith-Hicks CL, Chowdhury S, Kaufmann W, Kuhl D, Ryazanov AG, Huganir RL, Linden DJ, Worley PF (2008) Elongation factor 2 and fragile X mental retardation protein control the dynamic translation of Arc/Arg3.1 essential for mGluR-LTD. Neuron 59:70–83

    Article  PubMed  CAS  Google Scholar 

  63. Wang DO, Kim SM, Zhao Y, Hwang H, Miura SK, Sossin WS, Martin KC (2009) Synapse- and stimulus-specific local translation during long-term neuronal plasticity. Science 324:1536–1540

    Article  PubMed  CAS  Google Scholar 

  64. Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  PubMed  CAS  Google Scholar 

  65. Jang SK, Krausslich HG, Nicklin MJ, Duke GM, Palmenberg AC, Wimmer E (1988) A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    PubMed  CAS  Google Scholar 

  66. Sarnow P (1989) Translation of glucose-regulated protein 78/immunoglobulin heavy-chain binding protein mRNA is increased in poliovirus-infected cells at a time when cap-dependent translation of cellular mRNAs is inhibited. Proc Natl Acad Sci U S A 86:5795–5799

    Article  PubMed  CAS  Google Scholar 

  67. Macejak DG, Sarnow P (1991) Internal initiation of translation mediated by the 5′ leader of a cellular mRNA. Nature 353:90–94

    Article  PubMed  CAS  Google Scholar 

  68. Johannes G, Sarnow P (1998) Cap-independent polysomal association of natural mRNAs encoding c-myc, BiP, and eIF4G conferred by internal ribosome entry sites. RNA 4:1500–1513

    Article  PubMed  CAS  Google Scholar 

  69. Dyer JR, Michel S, Lee W, Castellucci VF, Wayne NL, Sossin WS (2003) An activity-dependent switch to cap-independent translation triggered by eIF4E dephosphorylation. Nat Neurosci 6:219–220

    Article  PubMed  CAS  Google Scholar 

  70. Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612

    Article  PubMed  CAS  Google Scholar 

  71. Kozak M (2001) A progress report on translational control in eukaryotes. Sci STKE 2001:pe1

    Article  PubMed  CAS  Google Scholar 

  72. Kozak M (2005) A second look at cellular mRNA sequences said to function as internal ribosome entry sites. Nucleic Acids Res 33:6593–6602

    Article  PubMed  CAS  Google Scholar 

  73. Kang H, Schuman EM (1996) A requirement for local protein synthesis in neurotrophin-induced hippocampal synaptic plasticity. Science 273:1402–1406

    Article  PubMed  CAS  Google Scholar 

  74. Martin KC, Casadio A, Zhu H, Yaping E, Rose JC, Chen M, Bailey CH, Kandel ER (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage. Cell 91:927–938

    Article  PubMed  CAS  Google Scholar 

  75. Moccia R, Chen D, Lyles V, Kapuya E, E Y, Kalachikov S, Spahn CM, Frank J, Kandel ER, Barad M, Martin KC (2003) An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci 23:9409–9417

    PubMed  CAS  Google Scholar 

  76. Lyles V, Zhao Y, Martin KC (2006) Synapse formation and mRNA localization in cultured Aplysia neurons. Neuron 49:349–356

    Article  PubMed  CAS  Google Scholar 

  77. Brunet JF, Shapiro E, Foster SA, Kandel ER, Iino Y (1991) Identification of a peptide specific for Aplysia sensory neurons by PCR-based differential screening. Science 252: 856–859

    Article  PubMed  CAS  Google Scholar 

  78. Chudakov DM, Lukyanov S, Lukyanov KA (2007) Using photoactivatable fluorescent protein Dendra2 to track protein movement. Biotechniques 42:553; 555; 557 passim

    Google Scholar 

  79. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV, Fradkov AF, Lukyanov S, Lukyanov KA (2006) Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat Biotechnol 24:461–465

    Article  PubMed  CAS  Google Scholar 

  80. Liu K, Hu JY, Wang D, Schacher S (2003) Protein synthesis at synapse versus cell body: enhanced but transient expression of long-term facilitation at isolated synapses. J Neurobiol 56:275–286

    Article  PubMed  CAS  Google Scholar 

  81. Sugita S, Goldsmith JR, Baxter DA, Byrne JH (1992) Involvement of protein kinase C in serotonin-induced spike broadening and synaptic facilitation in sensorimotor connections of Aplysia. J Neurophysiol 68:643–651

    PubMed  CAS  Google Scholar 

  82. Ghirardi M, Braha O, Hochner B, Montarolo PG, Kandel ER, Dale N (1992) Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 9:479–489

    Article  PubMed  CAS  Google Scholar 

  83. Sutton MA, Carew TJ (2000) Parallel molecular pathways mediate expression of distinct forms of intermediate-term facilitation at tail sensory-motor synapses in Aplysia. Neuron 26:219–231

    Article  PubMed  CAS  Google Scholar 

  84. Sutton MA, Bagnall MW, Sharma SK, Shobe J, Carew TJ (2004) Intermediate-term memory for site-specific sensitization in aplysia is maintained by persistent activation of protein kinase C. J Neurosci 24:3600–3609

    Article  PubMed  CAS  Google Scholar 

  85. Antonov I, Kandel ER, Hawkins RD (2010) Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J Neurosci 30:5781–5791

    Article  PubMed  CAS  Google Scholar 

  86. Kruger KE, Sossin WS, Sacktor TC, Bergold PJ, Beushausen S, Schwartz JH (1991) Cloning and characterization of Ca(2+)-dependent and Ca(2+)-independent PKCs expressed in Aplysia sensory cells. J Neurosci 11:2303–2313

    PubMed  CAS  Google Scholar 

  87. Bougie JK, Lim T, Farah CA, Manjunath V, Nagakura I, Ferraro GB, Sossin WS (2009) The atypical protein kinase C in Aplysia can form a protein kinase M by cleavage. J Neurochem 109:1129–1143

    Article  PubMed  CAS  Google Scholar 

  88. Newton AC (1995) Protein kinase C: structure, function, and regulation. J Biol Chem 270:28495–28498

    Article  PubMed  CAS  Google Scholar 

  89. Sando JJ (2003) Complexities in protein kinase C activity assays: an introduction. Methods Mol Biol 233:45–61

    PubMed  CAS  Google Scholar 

  90. Sossin WS (2007) Isoform specificity of protein kinase Cs in synaptic plasticity. Learn Mem 14:236–246

    Article  PubMed  CAS  Google Scholar 

  91. Sossin WS, Schwartz JH (1992) Selective activation of Ca(2+)-activated PKCs in Aplysia neurons by 5-HT. J Neurosci 12:1160–1168

    PubMed  CAS  Google Scholar 

  92. Zhao Y, Leal K, Abi-Farah C, Martin KC, Sossin WS, Klein M (2006) Isoform specificity of PKC translocation in living Aplysia sensory neurons and a role for Ca2+-dependent PKC APL I in the induction of intermediate-term facilitation. J Neurosci 26: 8847–8856

    Article  PubMed  CAS  Google Scholar 

  93. Manseau F, Fan X, Hueftlein T, Sossin W, Castellucci VF (2001) Ca2+-independent protein kinase C Apl II mediates the serotonin-induced facilitation at depressed aplysia sensorimotor synapses. J Neurosci 21:1247–1256

    PubMed  CAS  Google Scholar 

  94. Snapp E (2005) Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol Chapter 21:Unit 21.24

    Google Scholar 

  95. Schalm SS, Fingar DC, Sabatini DM, Blenis J (2003) TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 13:797–806

    Article  PubMed  CAS  Google Scholar 

  96. Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol 12:632–639

    Article  PubMed  CAS  Google Scholar 

  97. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278: 15461–15464

    Article  PubMed  CAS  Google Scholar 

  98. Hochner B, Klein M, Schacher S, Kandel ER (1986) Additional component in the cellular mechanism of presynaptic facilitation contributes to behavioral dishabituation in Aplysia. Proc Natl Acad Sci U S A 83:8794–8798

    Article  PubMed  CAS  Google Scholar 

  99. Hu JY, Chen Y, Bougie JK, Sossin WS, Schacher S (2010) Aplysia cell adhesion molecule and a novel protein kinase C activity in the postsynaptic neuron are required for presynaptic growth and initial formation of specific synapses. J Neurosci 30:8353–8366

    Article  PubMed  CAS  Google Scholar 

  100. Lorenzetti FD, Baxter DA, Byrne JH (2008) Molecular mechanisms underlying a cellular analog of operant reward learning. Neuron 59:815–828

    Article  PubMed  CAS  Google Scholar 

  101. Lagna G, Hemmati-Brivanlou A (1998) Use of dominant negative constructs to modulate gene expression. Curr Top Dev Biol 36:75–98

    Article  PubMed  CAS  Google Scholar 

  102. Kamisoyama H, Araki Y, Ikebe M (1994) Mutagenesis of the phosphorylation site (serine 19) of smooth muscle myosin regulatory light chain and its effects on the properties of myosin. Biochemistry 33:840–847

    Article  PubMed  CAS  Google Scholar 

  103. Bradshaw JM, Mitaxov V, Waksman G (1999) Investigation of phosphotyrosine recognition by the SH2 domain of the Src kinase. J Mol Biol 293:971–985

    Article  PubMed  CAS  Google Scholar 

  104. Chung HJ, Steinberg JP, Huganir RL, Linden DJ (2003) Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 300:1751–1755

    Article  PubMed  CAS  Google Scholar 

  105. Houeland G, Nakhost A, Sossin WS, Castellucci VF (2007) PKC modulation of transmitter release by SNAP-25 at sensory-to-motor synapses in aplysia. J Neurophysiol 97:134–143

    Article  PubMed  CAS  Google Scholar 

  106. Zhao Y, Wang DO, Martin KC (2009) Preparation of Aplysia sensory-motor neuronal cell cultures. J Vis Exp 28:1355

    Google Scholar 

  107. Farah CA, Sossin WS (2011) Live-imaging of PKC translocation in Sf9 cells and in aplysia sensory neurons. J Vis Exp 50:2516

    Google Scholar 

  108. Frost WN (1987) Mechanisms contributing to short- and long-term sensitization in Aplysia. Columbia University, New York

    Google Scholar 

  109. Martin (1966) Quantal nature of synaptic transmission. Physiol Rev (46):51–66

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Weatherill, D.B., Dunn, T.W., McCamphill, P.K., Sossin, W.S. (2013). Exploring Mechanisms of Synaptic Plasticity Using Exogenous Expression of Proteins at the Sensory-to-Motor Neuron Synapse of Aplysia . In: Nguyen, P. (eds) Multidisciplinary Tools for Investigating Synaptic Plasticity. Neuromethods, vol 81. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-517-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-517-0_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-516-3

  • Online ISBN: 978-1-62703-517-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics