Skip to main content

Generation of Human iPSCs from Human Peripheral Blood Mononuclear Cells Using Non-integrative Sendai Virus in Chemically Defined Conditions

  • Protocol
  • First Online:
Cellular Cardiomyoplasty

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1036))

Abstract

Human-induced pluripotent stem cells (hiPSCs) have received enormous attention because of their ability to differentiate into multiple cell types that demonstrate the patient’s original phenotype. The use of hiPSCs is particularly valuable to the study of cardiac biology, as human cardiomyocytes are difficult to isolate and culture and have a limited proliferative potential. By deriving iPSCs from patients with heart disease and subsequently differentiating these hiPSCs to cardiomyocytes, it is feasible to study cardiac biology in vitro and model cardiac diseases. While there are many different methods for deriving hiPSCs, clinical use of these hiPSCs will require derivation by methods that do not involve modification of the original genome (non-integrative) or incorporate xeno-derived products (such as bovine serum albumin) which may contain xeno-agents. Ideally, this derivation would be carried out under chemically defined conditions to prevent lot-to-lot variability and enhance reproducibility. Additionally, derivation from cell types such as fibroblasts requires extended culture (4–6 weeks), greatly increasing the time required to progress from biopsy to hiPSC. Herein, we outline a method of culturing peripheral blood mononuclear cells (PBMCs) and reprogramming PBMCs into hiPSCs using a non-integrative Sendai virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lebacqz K (2012) Stumbling on status: abortion, stem cells, and faulty reasoning. Theor Med Bioeth 33(1):75–82

    Article  PubMed  Google Scholar 

  2. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  3. Itzhaki I, Maizels L, Huber I et al (2011) Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471(7337):225–229

    Article  PubMed  CAS  Google Scholar 

  4. Lai WH, Ho JC, Lee YK et al (2010) ROCK inhibition facilitates the generation of human-induced pluripotent stem cells in a defined, feeder-, and serum-free system. Cell Reprogram 12(6):641–653

    Article  PubMed  CAS  Google Scholar 

  5. Itoh M, Kiuru M, Cairo MS, Christiano AM (2011) Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci USA 108(21):8797–8802

    Article  PubMed  CAS  Google Scholar 

  6. Raya A, Rodriguez-Piza I, Navarro S et al (2010) A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nat Protoc 5(4):647–660

    Article  PubMed  CAS  Google Scholar 

  7. Chou BK, Mali P, Huang X et al (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21(3):518–529

    Article  PubMed  CAS  Google Scholar 

  8. Burridge PW, Thompson S, Millrod MA et al (2011) A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 6(4):e18293

    Article  PubMed  CAS  Google Scholar 

  9. Sun N, Panetta NJ, Gupta DM et al (2009) Feeder-free derivation of induced pluripotent stem cells from adult human adipose stem cells. Proc Natl Acad Sci USA 106(37):15720–15725

    Article  PubMed  CAS  Google Scholar 

  10. Tiemann U, Sgodda M, Warlich E et al (2011) Optimal reprogramming factor stoichiometry increases colony numbers and affects molecular characteristics of murine induced pluripotent stem cells. Cytometry A 79(6):426–435

    PubMed  Google Scholar 

  11. Hanley J, Rastegarlari G, Nathwani AC (2010) An introduction to induced pluripotent stem cells. Br J Haematol 151(1):16–24

    Article  PubMed  CAS  Google Scholar 

  12. Chen G, Gulbranson DR, Hou Z et al (2011) Chemically defined conditions for human iPSC derivation and culture. Nat Methods 8(5):424–429

    Article  PubMed  CAS  Google Scholar 

  13. Jia F, Wilson KD, Sun N et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199

    Article  PubMed  CAS  Google Scholar 

  14. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5):618–630

    Article  PubMed  CAS  Google Scholar 

  15. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z, Tian Y, Zhang Y, Yang W, Gruber PJ, Epstein JA, Morrisey EE (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388

    Article  PubMed  CAS  Google Scholar 

  16. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85(8):348–362

    Article  PubMed  CAS  Google Scholar 

  17. Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11(2):228–232

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Churko, J.M., Burridge, P.W., Wu, J.C. (2013). Generation of Human iPSCs from Human Peripheral Blood Mononuclear Cells Using Non-integrative Sendai Virus in Chemically Defined Conditions. In: Kao, R. (eds) Cellular Cardiomyoplasty. Methods in Molecular Biology, vol 1036. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-511-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-511-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-510-1

  • Online ISBN: 978-1-62703-511-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics