Skip to main content

Strategies to Generate Induced Pluripotent Stem Cells

  • Protocol
  • First Online:
Embryonic Stem Cell Immunobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1029))

Abstract

The isolation of embryonic stem cells (ESCs) has furthered our understanding of normal embryonic development and fueled the progression of stem cell derived therapies. However, the generation of ESCs requires the destruction of an embryo, making the use of these cells ethically controversial. In 2006 the Yamanaka group overcame this ethical controversy when they described a protocol whereby somatic cells could be dedifferentiated into a pluripotent state following the transduction of a four transcription factor cocktail. Following this initial study numerous groups have described protocols to generate induced pluripotent stem cells (iPSCs). These protocols have simplified the reprogramming strategy by employing polycistronic reprogramming cassettes and flanking such polycistronic cassettes with loxP or piggyBac recognition sequences. Thus, these strategies allow for excision of the entire transgene cassette, limiting the potential for the integration of exogenous transgenes to have detrimental effect. Others have prevented the potentially deleterious effects of integrative reprogramming strategies by using non-integrating adenoviral vectors, traditional recombinant DNA transfection, transfection of minicircle DNA, or transfection of episomally maintained EBNA1/OriP plasmids. Interestingly, transfection of mRNA or miRNA has also been shown to be capable of reprogramming cells, and multiple groups have developed protocols using cell penetrating peptide tagged reprogramming factors to de-differentiate somatic cells in the absence of exogenous nucleic acid. Despite the numerous different reprogramming strategies that have been developed, the reprogramming process remains extremely inefficient. To overcome this inefficiency multiple groups have successfully used small molecules such as valproic acid, sodium butyrate, PD0325901, and others to generate iPSCs.

The fast paced field of cellular reprogramming has recently produced protocols to generate iPSCs using non integrative techniques with an ever improving efficiency. These recent developments have brought us one step closer to developing a safe and efficient method to reprogram cells for clinical use. However, a lot of work is still needed before iPSCs can be implemented in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78(12): 7634–7638

    Article  PubMed  CAS  Google Scholar 

  2. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  PubMed  CAS  Google Scholar 

  3. Briggs R, King TJ (1952) Transplantation of living nuclei from blastula cells into enucleated frogs' eggs. Proc Natl Acad Sci USA 38(5):455–463

    Article  PubMed  CAS  Google Scholar 

  4. Gurdon JB, Wilmut I (2011) Nuclear transfer to eggs and oocytes. Cold Spring Harb Perspect Biol 3(6):a002659

    Article  PubMed  Google Scholar 

  5. Gurdon JB, Byrne JA, Simonsson S (2003) Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci USA 100(Suppl 1):11819–11822

    Article  PubMed  CAS  Google Scholar 

  6. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi K et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  PubMed  CAS  Google Scholar 

  8. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  PubMed  CAS  Google Scholar 

  9. Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151): 313–317

    Article  PubMed  CAS  Google Scholar 

  10. Aoi T et al (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321(5889):699–702

    Article  PubMed  CAS  Google Scholar 

  11. Wang W et al (2011) Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proc Natl Acad Sci USA 108(45):18283–18288

    Article  PubMed  CAS  Google Scholar 

  12. Maekawa M et al (2011) Direct reprogramming of somatic cells is promoted by maternal transcription factor glis1. Nature 474(7350): 225–229

    Article  PubMed  CAS  Google Scholar 

  13. Mali P et al (2008) Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells 26(8):1998–2005

    Article  PubMed  CAS  Google Scholar 

  14. Carey BW et al (2009) Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA 106(1):157–162

    Article  PubMed  CAS  Google Scholar 

  15. Kaji K et al (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458(7239):771–775

    Article  PubMed  CAS  Google Scholar 

  16. Woltjen K et al (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458(7239):766–770

    Article  PubMed  CAS  Google Scholar 

  17. Stadtfeld M et al (2008) Induced pluripotent stem cells generated without viral integration. Science 322(5903):945–949

    Article  PubMed  CAS  Google Scholar 

  18. Zhou W, Freed CR (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27(11):2667–2674

    Article  PubMed  CAS  Google Scholar 

  19. Okita K et al (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322(5903):949–953

    Article  PubMed  CAS  Google Scholar 

  20. Si-Tayeb K et al (2010) Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol 10:81

    Article  PubMed  Google Scholar 

  21. Yu J et al (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324(5928):797–801

    Article  PubMed  CAS  Google Scholar 

  22. Conese M, Auriche C, Ascenzioni F (2004) Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther 11(24):1735–1741

    Article  PubMed  CAS  Google Scholar 

  23. Chou BK et al (2011) Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res 21(3):518–529

    Article  PubMed  CAS  Google Scholar 

  24. Jia F et al (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–199

    Article  PubMed  CAS  Google Scholar 

  25. Warren L et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7(5): 618–630

    Article  PubMed  CAS  Google Scholar 

  26. Miyoshi N et al (2011) Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell 8(6):633–638

    Article  PubMed  CAS  Google Scholar 

  27. Anokye-Danso F et al (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8(4):376–388

    Article  PubMed  CAS  Google Scholar 

  28. Kim D et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  PubMed  CAS  Google Scholar 

  29. Zhou H et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4(5):381–384

    Article  PubMed  CAS  Google Scholar 

  30. Huangfu D et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797

    Article  PubMed  CAS  Google Scholar 

  31. Huangfu D et al (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26(11):1269–1275

    Article  PubMed  CAS  Google Scholar 

  32. Zhu S et al (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell 7(6):651–655

    Article  PubMed  CAS  Google Scholar 

  33. Silva J et al (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6(10):e253

    Article  PubMed  Google Scholar 

  34. Li W et al (2009) Generation of human-­induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27(12): 2992–3000

    PubMed  CAS  Google Scholar 

  35. Shi Y et al (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2(6): 525–528

    Article  PubMed  CAS  Google Scholar 

  36. Lyssiotis CA et al (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106(22): 8912–8917

    Article  PubMed  Google Scholar 

  37. Ichida JK et al (2009) A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5(5):491–503

    Article  PubMed  CAS  Google Scholar 

  38. Li W et al (2009) Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 4(1):16–19

    Article  PubMed  Google Scholar 

  39. Staerk J et al (2011) Pan-Src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angew Chem 50(25):5734–5736

    Article  CAS  Google Scholar 

  40. Yuan X et al (2011) Combined chemical treatment enables Oct4-induced reprogramming from mouse embryonic fibroblasts. Stem Cells 21(6):884–894

    Google Scholar 

  41. Shi Y et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574

    Article  PubMed  CAS  Google Scholar 

  42. Watanabe K et al (2007) A ROCK inhibitor permits survival of dissociated human ­embryonic stem cells. Nat Biotechnol 25(6): 681–686

    Article  PubMed  CAS  Google Scholar 

  43. Lin T et al (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6(11):805–808

    Article  PubMed  CAS  Google Scholar 

  44. Mikkelsen TS et al (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454(7200):49–55

    Article  PubMed  CAS  Google Scholar 

  45. Pasha Z, Haider H, Ashraf M (2011) Efficient non-viral reprogramming of myoblasts to stemness with a single small molecule to generate cardiac progenitor cells. PLoS One 6(8): e23667

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without the support of a VA Merit Award grant No. 1I01BX001125-02 and grant NIH/NHLBI 2 R01 HL073015-07 to N.Z. We would also like to thank Gohar Manzar for her helpful suggestions in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Hayes, M., Zavazava, N. (2013). Strategies to Generate Induced Pluripotent Stem Cells. In: Zavazava, N. (eds) Embryonic Stem Cell Immunobiology. Methods in Molecular Biology, vol 1029. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-478-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-478-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-477-7

  • Online ISBN: 978-1-62703-478-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics