Skip to main content

NO/cGMP: The Past, the Present, and the Future

  • Protocol
  • First Online:
Guanylate Cyclase and Cyclic GMP

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1020))

Abstract

The NO/cGMP signalling cascade participates in the regulation of physiological parameters such as smooth muscle relaxation, inhibition of platelet aggregation, and neuronal transmission. cGMP is formed in response to nitric oxide (NO) by NO-sensitive guanylyl cyclases that exist in two isoforms (NO-GC1 and NO-GC2). Much has been learned about the regulation of NO-GC; however the precise role of cGMP in complex physiological and especially in pathophysiological settings and its alteration by biological factors needs to be established. Despite reports on a variety of cGMP-independent NO effects, KO mice with a complete lack of NO-GC provide evidence that the vasorelaxing and platelet-inhibiting effects of NO are solely mediated by NO-GC. Isoform-specific KOs demonstrate that low cGMP increases are sufficient to induce smooth muscle relaxation and that either NO-GC isoform is sufficient in most instances outside the central nervous system. In the neuronal system, however, the NO-GC isoforms obviously serve distinct functions as both isoforms are required for long-term potentiation and NO-GC1 was shown to enhance glutamate release in excitatory neurons in the hippocampal CA1 region by gating HCN channels. Future studies have to clarify the role of NO-GC2, to show whether HCN channels are general targets of cGMP in the nervous system and whether the NO/cGMP signalling cascade participates in synaptic transmission in other brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schultz G, Böhme E, Munske K (1969) Guanyl cyclase. Determination of enzyme activity. Life Sci 8:1323–1332

    Article  PubMed  CAS  Google Scholar 

  2. Chrisman TD, Garbers DL, Parks MA, Hardman JG (1975) Characterization of particulate and soluble guanylate cyclases from rat lung. J Biol Chem 250:374–381

    PubMed  CAS  Google Scholar 

  3. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  4. Kuno T, Andresen JW, Kamisaki Y, Waldman SA, Chang LY, Saheki S, Leitman DC, Nakane M, Murad F (1986) Co-purification of an atrial natriuretic factor receptor and particulate guanylate cyclase from rat lung. J Biol Chem 261:5817–5823

    PubMed  CAS  Google Scholar 

  5. Kuhn M (2009) Function and dysfunction of mammalian membrane guanylyl cyclase receptors: lessons from genetic mouse models and implications for human diseases. Handb Exp Pharmacol 191:47–69

    Article  PubMed  CAS  Google Scholar 

  6. Arnold WP, Mittal CK, Katsuki S, Murad F (1977) Nitric oxide activates guanylate cyclase and increases guanosine 3’:5’-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74:3203–3207

    Article  PubMed  CAS  Google Scholar 

  7. Hofmann F, Wegener JW (2013) cGMP dependent protein kinases (cGK). Methods Mol Biol

    Google Scholar 

  8. Gerzer R, Hofmann F, Schultz G (1981) Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem 116:479–486

    Article  PubMed  CAS  Google Scholar 

  9. Kamisaki Y, Saheki S, Nakane M, Palmieri JA, Kuno T, Chang BY, Waldman SA, Murad F (1986) Soluble guanylate cyclase from rat lung exists as a heterodimer. J Biol Chem 261:7236–7241

    PubMed  CAS  Google Scholar 

  10. Gerzer R, Böhme E, Hofmann F, Schultz G (1981) Soluble guanylate cyclase purified from bovine lung contains heme and copper. FEBS Lett 132:71–74

    Article  PubMed  CAS  Google Scholar 

  11. Russwurm M, Behrends S, Harteneck C, Koesling D (1998) Functional properties of a naturally occurring isoform of soluble guanylyl cyclase. Biochem J 335:125–130

    PubMed  CAS  Google Scholar 

  12. Russwurm M, Wittau N, Koesling D (2001) Guanylyl cyclase/PSD-95 interaction: targeting of the nitric oxide-sensitive alpha2beta1 guanylyl cyclase to synaptic membranes. J Biol Chem 276:44647–44652

    Article  PubMed  CAS  Google Scholar 

  13. Mergia E, Russwurm M, Zoidl G, Koesling D (2003) Major occurrence of the new alpha2bbeta1 isoform of NO-sensitive guanylyl cyclase in brain. Cell Signal 15:189–195

    Article  PubMed  CAS  Google Scholar 

  14. Stone JR, Marletta MA (1994) Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states. Biochemistry 33:36–5640

    Google Scholar 

  15. Russwurm M, Koesling D (2004) NO activation of guanylyl cyclase. EMBO J 23:4443–4450

    Article  PubMed  CAS  Google Scholar 

  16. Fernhoff NB, Derbyshire ER, Marletta MA (2009) A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci USA 106:21602–21607

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt HHHW, Schmidt PM, Stasch J-P (2009) NO- and haem-independent soluble guanylate cyclase activators. Handb Exp Pharmacol 191:309–339

    Article  PubMed  CAS  Google Scholar 

  18. Stasch J-P, Hobbs AJ (2009) NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb Exp Pharmacol 191:277–308

    Article  PubMed  CAS  Google Scholar 

  19. Russwurm M, Mergia E, Mullershausen F, Koesling D (2002) Inhibition of deactivation of NO-sensitive guanylyl cyclase accounts for the sensitizing effect of YC-1. J Biol Chem 277:24883–24888

    Article  PubMed  CAS  Google Scholar 

  20. Schmidt PM, Stasch JP (2013) Receptor binding assay for NO-independent activators of soluble guanylate cyclase. Methods Mol Biol

    Google Scholar 

  21. Acin-Perez R, Russwurm M, Günnewig K, Gertz M, Zoidl G, Ramos L, Buck J, Levin LR, Rassow J, Manfredi G, Steegborn C (2011) A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem 286:30423–30432

    Article  PubMed  CAS  Google Scholar 

  22. Russwurm C, Zoidl G, Koesling D, Russwurm M (2009) Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes. J Biol Chem 284:25782–25790

    Article  PubMed  CAS  Google Scholar 

  23. Jäger R, Russwurm C, Schwede F, Genieser HG, Koesling D, Russwurm M (2012) Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem 287:1210–1219

    Article  PubMed  Google Scholar 

  24. Jäger R, Groneberg D, Lies B, Bettaga N, Kümmel M, Friebe A (2013) Radioimmunoassay for the quantification of cGMP levels in cells and tissues. Methods Mol Biol

    Google Scholar 

  25. Mullershausen F, Russwurm M, Thompson WJ, Liu L, Koesling D, Friebe A (2001) Rapid nitric oxide-induced desensitization of the cGMP response is caused by increased activity of phosphodiesterase type 5 paralleled by phosphorylation of the enzyme. J Cell Biol 155:271–278

    Article  PubMed  CAS  Google Scholar 

  26. Mullershausen F, Lange A, Mergia E, Friebe A, Koesling D (2006) Desensitization of NO/cGMP signaling in smooth muscle: blood vessels versus airways. Mol Pharmacol 69:1969–1974

    Article  PubMed  CAS  Google Scholar 

  27. Hagiwara M, Endo T, Hidaka H (1984) Effects of vinpocetine on cyclic nucleotide metabolism in vascular smooth muscle. Biochem Pharmacol 33:453–457

    Article  PubMed  CAS  Google Scholar 

  28. Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  PubMed  CAS  Google Scholar 

  29. Mullershausen F, Friebe A, Feil R, Thompson WJ, Hofmann F, Koesling D (2003) Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling. J Cell Biol 160:719–727

    Article  PubMed  CAS  Google Scholar 

  30. Jäger R, Schwede F, Genieser HG, Koesling D, Russwurm M (2010) Activation of PDE2 and PDE5 by specific GAF ligands: delayed activation of PDE5. Br J Pharmacol 161:1645–1660

    Article  PubMed  Google Scholar 

  31. Turko IV, Francis SH, Corbin JD (1998) Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation. Biochem J 329:505–510

    PubMed  CAS  Google Scholar 

  32. Turko IV, Ballard SA, Francis SH, Corbin JD (1999) Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (Type 5) by sildenafil and related compounds. Mol Pharmacol 56:124–130

    PubMed  CAS  Google Scholar 

  33. Mullershausen F, Russwurm M, Koesling D, Friebe A (2003) The enhanced NO-induced cGMP response induced by long-term l-NAME treatment is not due to enhanced expression of NO-sensitive guanylyl cyclase. Vascul Pharmacol 40:161–165

    Article  PubMed  CAS  Google Scholar 

  34. Friebe A, Mergia E, Dangel O, Lange A, Koesling D (2007) Fatal gastrointestinal obstruction and hypertension in mice lacking nitric oxide-sensitive guanylyl cyclase. Proc Natl Acad Sci USA 104:7699–7704

    Article  PubMed  CAS  Google Scholar 

  35. Mergia E, Friebe A, Dangel O, Russwurm M, Koesling D (2006) Spare guanylyl cyclase NO receptors ensure high NO sensitivity in the vascular system. J Clin Invest 116:1731–1737

    Article  PubMed  CAS  Google Scholar 

  36. Buys ES, Sips P, Vermeersch P, Raher MJ, Rogge E, Ichinose F, Dewerchin M, Bloch KD, Janssens S, Brouckaert P (2008) Gender-specific hypertension and responsiveness to nitric oxide in sGC alpha1 knockout mice. Cardiovasc Res 79:179–186

    Article  PubMed  CAS  Google Scholar 

  37. Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszódi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fässler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051

    Article  PubMed  CAS  Google Scholar 

  38. Wagner C, Russwurm M, Jäger R, Friebe A, Koesling D (2005) Dimerization of nitric oxide-sensitive guanylyl cyclase requires the alpha 1 N terminus. J Biol Chem 280:17687–17693

    Article  PubMed  CAS  Google Scholar 

  39. Rees DD, Palmer RM, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA 86:3375–3378

    Article  PubMed  CAS  Google Scholar 

  40. Buys ES, Raher MJ, Kirby A, Mohd S, Baron DM, Hayton SR, Tainsh LT, Sips PY, Rauwerdink KM, Yan Q, Tainsh RE, Shakartzi HR, Stevens C, Decaluwé K, Rodrigues-Machado Mda G, Malhotra R, Van de Voorde J, Wang T, Brouckaert P, Daly MJ, Bloch KD (2012) Genetic modifiers of hypertension in soluble guanylate cyclase α1-deficient mice. J Clin Invest 122:2316–2325

    Article  PubMed  CAS  Google Scholar 

  41. van Vliet BN, Chafe LL, Montani JP (2003) Characteristics of 24 h telemetered blood pressure in eNOS-knockout and C57Bl/6 J control mice. J Physiol 549:313–325

    Article  PubMed  Google Scholar 

  42. Vermeersch P, Buys E, Pokreisz P, Marsboom G, Ichinose F, Sips P, Pellens M, Gillijns H, Swinnen M, Graveline A, Collen D, Dewerchin M, Brouckaert P, Bloch KD, Janssens S (2007) Soluble guanylate cyclase-alpha1 deficiency selectively inhibits the pulmonary vasodilator response to nitric oxide and increases the pulmonary vascular remodeling response to chronic hypoxia. Circulation 116:936–943

    Article  PubMed  CAS  Google Scholar 

  43. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Article  PubMed  CAS  Google Scholar 

  44. Chataigneau T, Félétou M, Huang PL, Fishman MC, Duhault J, Vanhoutte PM (1999) Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. Br J Pharmacol 126:219–226

    Article  PubMed  CAS  Google Scholar 

  45. Rich TC, Britain AL, Stedman T, Leavesley SJ (2013) Hyperspectral imaging of FRET-based cGMP probes. Methods Mol Biol

    Google Scholar 

  46. Thunemann M, Fomin N, Krawutschke C, Russwurm M, Feil R (2013) Visualization of cGMP with cGi biosensors. Methods Mol Biol

    Google Scholar 

  47. Götz KR, Nikolaev VO (2013) Advances and techniques to measure cGMP in intact cardiomyocytes. Methods Mol Biol

    Google Scholar 

  48. Held KF, Dostmann WR (2013) Real-time monitoring the spatio-temporal dynamics of intracellular cGMP in vascular smooth muscle cells. Methods Mol Biol

    Google Scholar 

  49. Andersson KE, Wagner G (1995) Physiology of penile erection. Physiol Rev 75:191–236

    PubMed  CAS  Google Scholar 

  50. Musicki B, Burnett AL (2006) eNOS function and dysfunction in the penis. Exp Biol Med (Maywood) 231:154–165

    CAS  Google Scholar 

  51. Nimmegeers S, Sips P, Buys E, Decaluwé K, Brouckaert P, Van de Voorde J (2007) Role of the soluble guanylyl cyclase alpha(1)-subunit in mice corpus cavernosum smooth muscle relaxation. Int J Impot Res 20:278–284

    Article  PubMed  Google Scholar 

  52. Vanneste G, Dhaese I, Sips P, Buys E, Brouckaert P, Lefebvre RA (2007) Gastric motility in soluble guanylate cyclase alpha 1 knock-out mice. J Physiol 584:907–920

    Article  PubMed  CAS  Google Scholar 

  53. Ny L, Pfeifer A, Aszòdi A, Ahmad M, Alm P, Hedlund P, Fässler R, Andersson KE (2000) Impaired relaxation of stomach smooth muscle in mice lacking cyclic GMP-dependent protein kinase I. Br J Pharmacol 129:395–401

    Article  PubMed  CAS  Google Scholar 

  54. Huang PL, Dawson TM, Bredt DS, Snyder SH, Fishman MC (1993) Targeted disruption of the neuronal nitric oxide synthase gene. Cell 75:1273–1286

    Article  PubMed  CAS  Google Scholar 

  55. Morishita T, Tsutsui M, Shimokawa H, Sabanai K, Tasaki H, Suda O, Nakata S, Tanimoto A, Wang KY, Ueta Y, Sasaguri Y, Nakashima Y, Yanagihara N (2005) Nephrogenic diabetes insipidus in mice lacking all nitric oxide synthase isoforms. Proc Natl Acad Sci USA 102:10616–10621

    Article  PubMed  CAS  Google Scholar 

  56. Groneberg D, König P, Koesling D, Friebe A (2011) Nitric oxide-sensitive guanylyl cyclase is dispensable for nitrergic signaling and gut motility in mouse intestinal smooth muscle. Gastroenterology 140:1608–1617

    Article  PubMed  CAS  Google Scholar 

  57. Ichinose F, Roberts JD Jr, Zapol WM (2004) Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109:3106–3111

    Article  PubMed  Google Scholar 

  58. Steudel W, Scherrer-Crosbie M, Bloch KD, Weimann J, Huang PL, Jones RC, Picard MH, Zapol WM (1998) Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest 101:2468–2477

    Article  PubMed  CAS  Google Scholar 

  59. Moncada S, Radomski MW, Palmer RM (1998) Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function. Biochem Pharmacol 37:2495–2501

    Article  Google Scholar 

  60. Wanstall JC, Homer KL, Doggrell SA (2005) Evidence for, and importance of, cGMP-independent mechanisms with NO and NO donors on blood vessels and platelets. Curr Vasc Pharmacol 3:41–53

    Article  PubMed  CAS  Google Scholar 

  61. Crane MS, Rossi AG, Megson IL (2005) A potential role for extracellular nitric oxide generation in cGMP-independent inhibition of human platelet aggregation: biochemical and pharmacological considerations. Br J Pharmacol 144:849–859

    Article  PubMed  CAS  Google Scholar 

  62. Massberg S, Sausbier M, Klatt P, Bauer M, Pfeifer A, Siess W, Fässler R, Ruth P, Krombach F, Hofmann F (1999) Increased adhesion and aggregation of platelets lacking cyclic guanosine 3′,5′-monophosphate kinase I. J Exp Med 189:1255–1264

    Article  PubMed  CAS  Google Scholar 

  63. Antl M, von Brühl ML, Eiglsperger C, Werner M, Konrad I, Kocher T, Wilm M, Hofmann F, Massberg S, Schlossmann J (2007) IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood 109:552–559

    Article  PubMed  CAS  Google Scholar 

  64. Schmidtko A, Gao W, König P, Heine S, Motterlini R, Ruth P, Schlossmann J, Koesling D, Niederberger E, Tegeder I, Friebe A, Geisslinger G (2008) cGMP produced by NO-sensitive guanylyl cyclase essentially contributes to inflammatory and neuropathic pain by using targets different from cGMP-dependent protein kinase I. J Neurosci 28:8568–8576

    Article  PubMed  CAS  Google Scholar 

  65. Lu R, Schmidtko A (2013) Direct Intrathecal drug delivery in mice for detecting in vivo effects of cGMP on pain processing. Methods Mol Biol

    Google Scholar 

  66. Snyder SH, Bredt DS (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol Sci 12:125–128

    Article  PubMed  CAS  Google Scholar 

  67. Boehning D, Snyder SH (2003) Novel neural modulators. Annu Rev Neurosci 26:105–131

    Article  PubMed  CAS  Google Scholar 

  68. Garthwaite J (2008) Concepts of neural nitric oxide-mediated transmission. Eur J Neurosci 27:2783–2802

    Article  PubMed  Google Scholar 

  69. Christopherson KS, Hillier BJ, Lim WA, Bredt DS (1999) PSD-95 assembles a ternary complex with the N-methyl-d-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J Biol Chem 274:27467–27473

    Article  PubMed  CAS  Google Scholar 

  70. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Article  PubMed  CAS  Google Scholar 

  71. O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88:11285–11289

    Article  PubMed  Google Scholar 

  72. Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    Article  PubMed  CAS  Google Scholar 

  73. Taqatqeh F, Mergia E, Neitz A, Eysel UT, Koesling D, Mittmann T (2009) More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci 29:9344–9350

    Article  PubMed  CAS  Google Scholar 

  74. Haghikia A, Mergia E, Friebe A, Eysel UT, Koesling D, Mittmann T (2007) Long-term potentiation in the visual cortex requires both nitric oxide receptor guanylyl cyclases. J Neurosci 27:818–823

    Article  PubMed  CAS  Google Scholar 

  75. Bon CL, Garthwaite J (2003) On the role of nitric oxide in hippocampal long-term potentiation. J Neurosci 23:1941–1948

    PubMed  CAS  Google Scholar 

  76. Hopper RA, Garthwaite J (2006) Tonic and phasic nitric oxide signals in signals in hippocampal long-term potentiation. J Neurosci 26:11513–11521

    Article  PubMed  CAS  Google Scholar 

  77. Son H, Hawkins RD, Martin K, Kiebler M, Huang PL, Fishman MC, Kandel ER (1996) Long-term potentiation is reduced in mice that are doubly mutant in endothelial and neuronal nitric oxide synthase. Cell 13:1015–1023

    Article  Google Scholar 

  78. Neitz A, Mergia E, Eysel UT, Koesling D, Mittmann T (2011) NO/cGMP facilitates glutamate release via HCN channels. Eur J Neurosci 33:1611–1621

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Russwurm, M., Russwurm, C., Koesling, D., Mergia, E. (2013). NO/cGMP: The Past, the Present, and the Future. In: Krieg, T., Lukowski, R. (eds) Guanylate Cyclase and Cyclic GMP. Methods in Molecular Biology, vol 1020. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-459-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-459-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-458-6

  • Online ISBN: 978-1-62703-459-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics