Skip to main content

Monitoring Synaptic Plasticity by Imaging AMPA Receptor Content and Dynamics on Dendritic Spines

  • Protocol
  • First Online:
Neural Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1018))

Abstract

Time-lapse imaging techniques are widely used to monitor dendritic spine dynamics, a measurement of synaptic plasticity. However, it is challenging to follow the dynamics of spines over an extended period in vivo during development or in deep brain structures that are beyond the reach of traditional microscopes. Here, we describe an AMPA receptor-based optical approach to monitor recent history of synaptic plasticity. This method allows the identification of spines that have recently acquired synaptic AMPA receptors in a single imaging session, so that synaptic plasticity that occurs in vivo in a variety of conditions can be simply imaged in an ex vivo preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuste R, Konnerth A (2005) Imaging in neuroscience and development: a laboratory manual. Cold Spring Harbor, NY Laboratory Press

    Google Scholar 

  2. Kopec CD, Li B, Wei W, Boehm J, Malinow R (2006) Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 26:2000–2009

    Article  PubMed  CAS  Google Scholar 

  3. Kopec CD, Real E, Kessels HW, Malinow R (2007) GluR1 links structural and functional plasticity at excitatory synapses. J Neurosci 27:13706–13718

    Article  PubMed  CAS  Google Scholar 

  4. Holtmaat AJ et al (2005) Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45:279–291

    Article  PubMed  CAS  Google Scholar 

  5. Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983

    Article  PubMed  CAS  Google Scholar 

  6. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    Article  PubMed  CAS  Google Scholar 

  7. Yang G, Pan F, Gan WB (2009) Stably maintained dendritic spines are associated with ­lifelong memories. Nature 462:920–924

    Article  PubMed  CAS  Google Scholar 

  8. Xu T et al (2009) Rapid formation and ­selective stabilization of synapses for enduring motor memories. Nature 462:915–919

    Article  PubMed  CAS  Google Scholar 

  9. Lai CS, Franke TF, Gan WB (2012) Opposite effects of fear conditioning and extinction on dendritic spine remodelling. Nature 483:87–91

    Article  PubMed  CAS  Google Scholar 

  10. Fu M, Yu X, Lu J, Zuo Y (2012) Repetitive motor learning induces coordinated formation of clustered dendritic spines in vivo. Nature 483:92–95

    Article  PubMed  CAS  Google Scholar 

  11. Harris KM, Kater SB (1994) Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 17:341–371

    Article  PubMed  CAS  Google Scholar 

  12. Harris KM, Stevens JK (1989) Dendritic spines of CA 1 pyramidal cells in the rat hippocampus: serial electron microscopy with reference to their biophysical characteristics. J Neurosci 9:2982–2997

    PubMed  CAS  Google Scholar 

  13. Takumi Y, Ramirez-Leon V, Laake P, Rinvik E, Ottersen OP (1999) Different modes of ­expression of AMPA and NMDA receptors in hippocampal synapses. Nat Neurosci 2:618–624

    Article  PubMed  CAS  Google Scholar 

  14. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  PubMed  CAS  Google Scholar 

  15. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  PubMed  CAS  Google Scholar 

  16. Makino H, Malinow R (2009) AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381–390

    Article  PubMed  CAS  Google Scholar 

  17. Makino H, Malinow R (2011) Compartmentalized versus global synaptic plasticity on dendrites controlled by experience. Neuron 72:1001–1011

    Article  PubMed  CAS  Google Scholar 

  18. Gainey MA, Hurvitz-Wolff JR, Lambo ME, Turrigiano GG (2009) Synaptic scaling requires the GluR2 subunit of the AMPA receptor. J Neurosci 29:6479–6489

    Article  PubMed  CAS  Google Scholar 

  19. Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417:649–653

    Article  PubMed  CAS  Google Scholar 

  20. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D (2007) Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–460

    Article  PubMed  CAS  Google Scholar 

  21. Triller A, Choquet D (2005) Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 28:133–139

    Article  PubMed  CAS  Google Scholar 

  22. Matsuda T, Cepko CL (2007) Controlled expression of transgenes introduced by in vivo electroporation. Proc Natl Acad Sci USA 104:1027–1032

    Article  PubMed  CAS  Google Scholar 

  23. Saito T (2006) In vivo electroporation in the embryonic mouse central nervous system. Nat Protoc 1:1552–1558

    Article  PubMed  CAS  Google Scholar 

  24. Hatanaka Y, Hisanaga S, Heizmann CW, Murakami F (2004) Distinct migratory behavior of early- and late-born neurons derived from the cortical ventricular zone. J Comp Neurol 479:1–14

    Article  PubMed  Google Scholar 

  25. Borrell V, Yoshimura Y, Callaway EM (2005) Targeted gene delivery to telencephalic ­inhibitory neurons by directional in utero electroporation. J Neurosci Methods 143:151–158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Malinow for critical reading of the manuscript. This work was supported by NIH, the Dana Foundation, NARSAD (B.L.), and the Uehara Memorial Foundation (H.M.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Makino, H., Li, B. (2013). Monitoring Synaptic Plasticity by Imaging AMPA Receptor Content and Dynamics on Dendritic Spines. In: Zhou, R., Mei, L. (eds) Neural Development. Methods in Molecular Biology, vol 1018. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-444-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-444-9_25

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-443-2

  • Online ISBN: 978-1-62703-444-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics