Skip to main content

A Bioinformatics Method for Identifying Q/N-Rich Prion-Like Domains in Proteins

  • Protocol
  • First Online:
Tandem Repeats in Genes, Proteins, and Disease

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1017))

Abstract

Numerous proteins contain domains that are enriched in glutamine and asparagine residues, and aggregation of some of these proteins has been linked to both prion formation in yeast and a number of human diseases. Unfortunately, predicting whether a given glutamine/asparagine-rich protein will aggregate has proven difficult. Here we describe a recently developed algorithm designed to predict the aggregation propensity of glutamine/asparagine-rich proteins. We discuss the basis for the algorithm, its limitations, and usage of recently developed online and downloadable versions of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97(22):11910–11915

    Article  PubMed  CAS  Google Scholar 

  2. MacLea KS, Ross ED (2011) Strategies for identifying new prions in yeast. Prion 5(4):263–268

    PubMed  CAS  Google Scholar 

  3. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80. doi:10.1016/j.brainres.2012.01.016

    Article  PubMed  CAS  Google Scholar 

  4. Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21(6):904–919. doi:10.1016/j.conb.2011.05.029

    Article  PubMed  Google Scholar 

  5. Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Mojsilovic-Petrovic J, Panossian S, Kim CE, Frackelton EC, Solski JA, Williams KL, Clay-Falcone D, Elman L, McCluskey L, Greene R, Hakonarson H, Kalb RG, Lee VM, Trojanowski JQ, Nicholson GA, Blair IP, Bonini NM, Van Deerlin VM, Mourelatos Z, Shorter J, Gitler AD (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21(13):2899–2911. doi:10.1093/hmg/dds116

    Article  PubMed  CAS  Google Scholar 

  6. Couthouis J, Hart MP, Shorter J, Dejesus-Hernandez M, Erion R, Oristano R, Liu AX, Ramos D, Jethava N, Hosangadi D, Epstein J, Chiang A, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Solski JA, Williams KL, Mojsilovic-Petrovic J, Ingre C, Boylan K, Graff-Radford NR, Dickson DW, Clay-Falcone D, Elman L, McCluskey L, Greene R, Kalb RG, Lee VM, Trojanowski JQ, Ludolph A, Robberecht W, Andersen PM, Nicholson GA, Blair IP, King OD, Bonini NM, Van Deerlin V, Rademakers R, Mourelatos Z, Gitler AD (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci USA 108:20881–20890. doi:10.1073/pnas.1109434108

    Article  PubMed  CAS  Google Scholar 

  7. Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O, Roeber S, Kretzschmar HA, Munoz DG, Kusaka H, Yokota O, Ang LC, Bilbao J, Rademakers R, Haass C, Mackenzie IR (2011) FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134(Pt 9):2595–2609. doi:10.1093/brain/awr201

    Article  PubMed  Google Scholar 

  8. Ross ED, Baxa U, Wickner RB (2004) Scrambled prion domains form prions and amyloid. Mol Cell Biol 24(16):7206–7213

    Article  PubMed  CAS  Google Scholar 

  9. Ross ED, Edskes HK, Terry MJ, Wickner RB (2005) Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102(36):12825–12830

    Article  PubMed  CAS  Google Scholar 

  10. Harrison PM, Gerstein M (2003) A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol 4(6):R40

    Article  PubMed  Google Scholar 

  11. Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5(1):163–172

    Article  PubMed  CAS  Google Scholar 

  12. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137(1):146–158

    Article  PubMed  CAS  Google Scholar 

  13. Toombs JA, McCarty BR, Ross ED (2010) Compositional determinants of prion formation in yeast. Mol Cell Biol 30(1):319–332

    Article  PubMed  CAS  Google Scholar 

  14. Ross ED, Toombs JA (2010) The effects of amino acid composition on yeast prion formation and prion domain interactions. Prion 4(2):60–65

    Article  PubMed  CAS  Google Scholar 

  15. Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED (2012) De novo design of synthetic prion domains. Proc Natl Acad Sci USA 109(17):6519–6524

    Article  PubMed  CAS  Google Scholar 

  16. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    Article  PubMed  CAS  Google Scholar 

  17. Chou PY, Fasman GD (1974) Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry 13(2):211–222

    Article  PubMed  CAS  Google Scholar 

  18. Crow ET, Du Z, Li L (2011) A small, glutamine-free domain propagates the [SWI(+)] prion in budding yeast. Mol Cell Biol 31(16):3436–3444. doi:10.1128/MCB.05338-11

    Article  PubMed  CAS  Google Scholar 

  19. Kim HJ, Kim NC, Wang YD, et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Science Foundation grant (MCB-1023771) to E.D.R.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Ross, E.D., MacLea, K.S., Anderson, C., Ben-Hur, A. (2013). A Bioinformatics Method for Identifying Q/N-Rich Prion-Like Domains in Proteins. In: Hatters, D., Hannan, A. (eds) Tandem Repeats in Genes, Proteins, and Disease. Methods in Molecular Biology, vol 1017. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-438-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-438-8_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-437-1

  • Online ISBN: 978-1-62703-438-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics