Skip to main content

Multiple Reaction Monitoring (MRM) of Plasma Proteins in Cardiovascular Proteomics

  • Protocol
  • First Online:
Vascular Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1000))

Abstract

Different methodologies have been used through years to discover new potential biomarkers related with cardiovascular risk. The conventional proteomic strategy involves a discovery phase that requires the use of mass spectrometry (MS) and a validation phase, usually on an alternative platform such as immunoassays that can be further implemented in clinical practice. This approach is suitable for a single biomarker, but when large panels of biomarkers must be validated, the process becomes inefficient and costly. Therefore, it is essential to find an alternative methodology to perform the biomarker discovery, validation, and ­quantification. The skills provided by quantitative MS turn it into an extremely attractive alternative to antibody-based technologies. Although it has been traditionally used for quantification of small molecules in clinical chemistry, MRM is now emerging as an alternative to traditional immunoassays for candidate protein biomarker validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McGregor E, Dunn MJ (2003) Proteomics of heart disease. Hum Mol Genet 12(Spec No. 2):R135–R144

    Article  PubMed  CAS  Google Scholar 

  2. Van Eyk JE, Dunn MJ (2003) Proteomic and genomic analysis of cardiovascular disease. Wiley, Chichester

    Google Scholar 

  3. Mayr M, Mayr U, Chung YL, Yin X, Griffiths JR, Xu Q (2004) Vascular proteomics: linking proteomic and metabolomic changes. Proteomics 4:3751–3761

    Article  PubMed  CAS  Google Scholar 

  4. Marian AJ, Nambi V (2004) Biomarkers of cardiac disease. Expert Rev Mol Diagn 4:805–820

    Article  PubMed  CAS  Google Scholar 

  5. Barderas MG, Tunon J, Darde VM, De la Cuesta F, Duran MC, Jiménez-Nácher JJ, Tarín N, López-Bescós L, Egido J, Vivanco F (2007) Circulating human monocytes in the acute coronary syndrome express a characteristic proteomic profile. J Proteome Res 6:876–886

    Article  PubMed  CAS  Google Scholar 

  6. Darde VM, De la Cuesta F, Gil-Dones F, Alvarez-Llamas G, Barderas MG, Vivanco F (2010) Analysis of the plasma proteome associated with acute coronary syndrome: does a permanent protein signature exist in the plasma of ACS patients? J Proteome Res 9:4420–4432

    Article  PubMed  CAS  Google Scholar 

  7. Gil-Dones F, Martin-Rojas T, Lopez-Almodovar LF, de la Cuesta F, Darde VM, Alvarez-Llamas G, Juarez-Tosina R, Barroso G, Vivanco F, Padial LR, Barderas MG (2010) Valvular aortic stenosis: a proteomic insight. Clin Med Insights Cardiol 4:1–7

    Article  PubMed  Google Scholar 

  8. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  PubMed  CAS  Google Scholar 

  9. Perchalski R, Yost R, Wilder B (1982) Structural elucidation of drug metabolites by triple-quadrupole mass spectrometry. Anal Chem 54:1466–1471

    Article  CAS  Google Scholar 

  10. Tiller PR, Cunniff J, Land AP, Schwartz J, Jardine I, Wakefield M, Lopez L, Newton JF, Burton RD, Folk BM, Buhrman DL, Price P, Wu D (1997) Drug quantitation on a benchtop liquid chromatography-tandem mass spectrometry system. J Chromatogr A 771:119–125

    Article  PubMed  CAS  Google Scholar 

  11. Lee MS, Kerns EH (1999) LC/MS applications in drug development. Mass Spectrom Rev 18:187–279

    Article  PubMed  CAS  Google Scholar 

  12. Tai SS, Bunk DM, White ET, Welch MJ (2004) Development and evaluation of a reference measurement procedure for the determination of total 3,3,5-triiodothyronine in human serum using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Chem 76:5092–5096

    Article  PubMed  CAS  Google Scholar 

  13. Sannino A, Bolzoni L, Bandini M (2004) Application of liquid chromatography with electrospray tandem mass spectrometry to the determination of a new generation of pesticides in processed fruits and vegetables. J Chromatogr A 1036:161–169

    Article  PubMed  CAS  Google Scholar 

  14. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–2229

    Article  PubMed  CAS  Google Scholar 

  15. Barr DB, Barr JR, Maggio VL, Whitehead RD Jr, Sadowski MA, Whyatt RM, Needham LL (2002) A multi-analyte method for the quantification of contemporary pesticides in human serum and plasma using high-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 778:99–111

    Article  PubMed  CAS  Google Scholar 

  16. Keshishian H, Addona T, Burgess M, Mani DR, Shi X, Kuhn E, Sabatine MS, Gerszten RE, Carr SA (2009) Quantification of cardiovascular biomarkers in patient plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 8:2339–2349

    Article  PubMed  CAS  Google Scholar 

  17. Kuhn E, Wu J, Karl J, Liao H, Zolg W, Guild B (2004) Quantification of C-reactive protein in the serum of patients with rheumatoid arthritis using multiple reaction monitoring mass spectrometry and 13C labeled peptide standards. Proteomics 4:1175–1186

    Article  PubMed  CAS  Google Scholar 

  18. Gil-Dones F, Darde VM, Alonso-Orgaz S, Lopez-Almodovar LF, Mourino-Alvarez L, Padial LR, Vivanco F, Barderas MG (2012) Inside human aortic stenosis: a proteomic analysis of plasma. J Proteomics 75:1639–1653

    Article  PubMed  CAS  Google Scholar 

  19. Hager JW (2002) A new linear ion trap mass spectrometer. Rapid Commun Mass Spectrom 16:512–526

    Article  CAS  Google Scholar 

  20. Hopfgartner G, Varesio E, Tschappat V, Grivat C, Bourgogne E, Leuthold LA (2004) Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom 39:845–855

    Article  PubMed  CAS  Google Scholar 

  21. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high sensitivity. Mol Cell Proteomics 4:1134–1144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from FIS PI11/01401 and FIS PI08/0970 and by SESCAM.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Dardé, V.M., Barderas, M.G., Vivanco, F. (2013). Multiple Reaction Monitoring (MRM) of Plasma Proteins in Cardiovascular Proteomics. In: Vivanco, F. (eds) Vascular Proteomics. Methods in Molecular Biology, vol 1000. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-405-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-405-0_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-404-3

  • Online ISBN: 978-1-62703-405-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics