Skip to main content

Optimizing Selection of Microsatellite Loci from 454 Pyrosequencing via Post-sequencing Bioinformatic Analyses

  • Protocol
  • First Online:
Microsatellites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1006))

Abstract

The comparatively low cost of massive parallel sequencing technology, also known as next-generation sequencing (NGS), has transformed the isolation of microsatellite loci. The most common NGS approach consists of obtaining large amounts of sequence data from genomic DNA or enriched microsatellite libraries, which is then mined for the discovery of microsatellite repeats using bioinformatics analyses. Here, we describe a bioinformatics approach to isolate microsatellite loci, starting from the raw sequence data through a subset of microsatellite primer pairs. The primary difference to previously published approaches includes analyses to select the most accurate sequence data and to eliminate repetitive elements prior to the design of primers. These analyses aim to minimize the testing of primer pairs by identifying the most promising microsatellite loci.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  2. Andrés JA, Bogdanowicz SM (2011) Isolating microsatellite loci: looking back, looking ahead. In: Methods in molecular biology, vol 772. Part 3, pp 211–232, doi:10.1007/978-1-61779-228-1_12.

  3. Estoup A, Turgeon J (1996) Microsatellite markers: Isolation with non-radioactive probes and amplification. Version of 12/1996 Laboratoire de Génétique des Poissons, INRA 78352 Jouy-en-Josas France.

    Google Scholar 

  4. Glenn TC (1996) The microsatellite manual version 6, July 27, 1996 Laboratory of Molecular Systematics—MRC 534. MSC Smithsonian Institution, Washington, DC 20560

    Google Scholar 

  5. Toonen RJ (1997) Microsatellites for ecologists: non-radioactive isolation and amplification protocols for microsatellite markers, Unpublished manuscript, available from the author or via anonymous FTP from http://biogeek.ucdavis.edu/Msats/ or http://www2.hawaii.edu/∼toonen/files/MsatsV1.pdf

  6. Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. In: Zimmer EA, Roalson E (eds) Molecular evolution: producing the biochemical data, part B. Academic Press, San Diego, USA, pp 202–222

    Chapter  Google Scholar 

  7. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  PubMed  CAS  Google Scholar 

  8. Neff BD, Gross MR (2001) Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats. Evolution 55:1717–1733

    PubMed  CAS  Google Scholar 

  9. Abbott CL, Ebert D, Tabata A et al (2010) Twelve microsatellite markers in the invasive tunicate, Didemnum vexillum, isolated from low genome coverage 454 pyrosequencing reads. Conserv Genet Resour 3:79–81

    Article  Google Scholar 

  10. Castoe TA, Poole AW, Gu W et al (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10:341–347. doi:10.1111/j.1755-0998.2009.02750.x

    Article  PubMed  CAS  Google Scholar 

  11. Lepais O, Bacles DFE (2011) Comparison of random and SSR-enriched shotgun pyrosequencing for microsatellite discovery and single multiplex PCR optimization in Acacia harpophylla F. Muell Ex Benth Mol Ecol Resour 11:711–724. doi:10.1111/j.1755-0998.2011.03002.x

    Article  Google Scholar 

  12. Malausa T, Gilles A, Meglecz E et al (2011) High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Mol Ecol Resour 11:638–644. doi:10.1111/j.1755-0998.2011.02992.x

    Article  PubMed  CAS  Google Scholar 

  13. Perry JC, Rowe L (2011) Rapid microsatellite development for water striders by next-generation sequencing. J Hered 102(1):125–129. doi:10.1093/jhered/esq099

    Article  PubMed  CAS  Google Scholar 

  14. Whitney JL, Karl SA (2012) Development of 38 microsatellite loci from the Arceye hawkfish, Paracirrhites arcatus, using next-generation sequencing and cross-amplification in other Cirrhitid species. Cons Genet Resour. doi:10.1007/s12686-011-9589-y

  15. Roche Technical Bulletin No. 2010-010 August 2010 Multiplex Identifier (MID) Adaptors for Rapid Library Preparations. http://ftp.genome.ou.edu/pub/454/TCB-10010_MIDAdaptorsforRapidLibraryPreparations.pdf

  16. sff_extract and clean_reads (http://bioinf.comav.upv.es/)

  17. Fastx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit/)

  18. FastQC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/)

  19. Megelcz E, Costedoat C, Dubut V et al (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26(3):403–404. doi:10.1093/bioinformatics/btp670, http://gsite.univ-provence.fr/gsite/Local/egee/dir/meglecz/QDD.html

    Article  Google Scholar 

  20. Kohany O, Gentles AJ, Hankus L et al (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinformatics 25(7):474, http://www.girinst.org/repbase/index.html

    Article  Google Scholar 

  21. Thurston MI, Field D (2005) Msatfinder: detection and characterization of microsatellites. Distributed by the authors at http://www.genomics.ceh.ac.uk/msatfinder/. CEH Oxford, Mansfield Road, Oxford OX1 3SR.

  22. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386, http://frodo.wi.mit.edu/

    PubMed  CAS  Google Scholar 

  23. Haddock S, Dunn C (2010) Practical computing for biologists, 1st edn. Sinauer Associates, Inc., Sunderland, MA

    Google Scholar 

Download references

Acknowledgments

We thank all the members of the ToBo and Karl labs and the Hawai’i Institute of Marine Biology EPSCoR core genetics facility and staff for feedback, discussion, and assistance with this protocol. This project was funded by a Fullbright Fellowship award to I.F.S. and National Science Foundation grants (Bio OCE-0623699, OCE-0929031) to R.J.T. and B.W.B. This is contribution #1521 from the Hawai’i Institute of Marine Biology and 8755 from the School of Ocean and Earth Sciences and Technology (SOEST).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fernandez-Silva, I., Toonen, R.J. (2013). Optimizing Selection of Microsatellite Loci from 454 Pyrosequencing via Post-sequencing Bioinformatic Analyses. In: Kantartzi, S. (eds) Microsatellites. Methods in Molecular Biology, vol 1006. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-389-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-389-3_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-388-6

  • Online ISBN: 978-1-62703-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics