Skip to main content

Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis for Visualization of Simple Sequence Repeats

  • Protocol
  • First Online:
Microsatellites

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1006))

Abstract

In the modern age of genetic research there is a constant search for ways to improve the efficiency of plant selection. The most recent technology that can result in a highly efficient means of selection and still be done at a low cost is through plant selection directed by simple sequence repeats (SSRs or microsatellites). The molecular markers are used to select for certain desirable plant traits without relying on ambiguous phenotypic data. The best way to detect these is the use of gel electrophoresis. Gel electrophoresis is a common technique in laboratory settings which is used to separate deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) by size. Loading DNA and RNA onto gels allows for visualization of the size of fragments through the separation of DNA and RNA fragments. This is achieved through the use of the charge in the particles. As the fragments separate, they form into distinct bands at set sizes. We describe the ability to visualize SSRs on slab gels of agarose and polyacrylamide gel electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stuber CW, Lincoln SE, Wolff DW, Helentjaris T, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  2. Lehran H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    Article  Google Scholar 

  3. Eckerskorn C, Lottspeich F (1989) Internal amino acid sequence analysis of proteins separated by gel electrophoresis after tryptic digestion in polyacrylamide matrix. Chromatographia 28:92–94

    Article  CAS  Google Scholar 

  4. Viovy JL, Duke T (2005) DNA electrophoresis in polymer solutions: ogston sieving, reptation and constraint release. Electrophoresis 14:322–329

    Article  Google Scholar 

  5. Johnson PH, Grossman LI (1977) Electrophoresis of DNA in agarose gels. Optimizing separations of conformational isomers of double- and single-stranded DNAs. Biochemistry 16:4217–4225

    Article  PubMed  CAS  Google Scholar 

  6. Rio DC, Ares M Jr, Hannon GJ, Nilsen TW (2010) Polyacrylamide gel electrophoresis of RNA. Cold Spring Harb Protoc. doi:10.1101/pub.prot5444

  7. Thorne HV (1966) Electrophoretic separation of polyoma virus DNA from host cell DNA. Virology 29:234–239

    Article  PubMed  CAS  Google Scholar 

  8. Borst P (2005) Ethidium DNA agarose gel electrophoresis: how it started. IUBMB Life 57(11):745–747

    Article  PubMed  CAS  Google Scholar 

  9. Schmidt F, Schmidt J, Riechers A, Haase S, Bosserhoff A, Heilmann J, Konig B (2010) DNA staining in agarose gels with ZN2+-cyclen-pyrene. Nucleosides Nucleotides Nucleic Acids 29(10):748–759

    Article  PubMed  CAS  Google Scholar 

  10. Stellwagen NC, Gelfi C, Righetti PG (1998) The free solution mobility of DNA. Biopolymers 42:687–703

    Article  Google Scholar 

  11. Aebersold PB, Winans GA, Teel DJ, Milner GB, Utter FM (1987) Manual for starch gel electrophoresis: a method for the detection of genetic variation. NOAA technical report NMFS 61

    Google Scholar 

  12. Tenover FC, Arbeit RD, Goering RV, Mickelson PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239

    PubMed  CAS  Google Scholar 

  13. Brody J, Kern S (2004) Sodium boric acid: a Tris-free, cooler conductive medium for DNA electrophoresis. Biotechniques 36:214–216

    PubMed  CAS  Google Scholar 

  14. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & Hall, New York

    Book  Google Scholar 

  15. Mohan M, Nair S, Bhagwat A, Krishna TG, Yano M, Bhatia CR, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3:87–103

    Article  CAS  Google Scholar 

  16. Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu L, Lightfoot DA, Li W (2008) Mapping QTL tolerance to phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 162:231–239

    Article  CAS  Google Scholar 

  17. Johnson W, Silhavy T, Boos W (1975) Two-dimensional polyacrylamide gel electrophoresis of envelope proteins of Escherichia coli. Appl Microbiol 1975:405–413

    Google Scholar 

  18. Bonaventura C, Bonaventura J, Stevens R, Millington D (1994) Acrylamide in polyacrylamide gels can modify proteins during electrophoresis. Anal Biochem 222:44–48

    Article  PubMed  CAS  Google Scholar 

  19. Vanek P, Fabian S, Fisher C, Chirikjian J, Collier G (1995) Alternative to polyacrylamide gels improves the electrophoretic mobility shift assay. Biotechniques 18(4):704–706

    PubMed  CAS  Google Scholar 

  20. Cong W, He H, Zhu Z, Ye C, Ysng X, Choi J, Jin L, Li X (2010) Improved conditions for silver–ammonia staining of DNA in polyacrylamide gel. Electrophoresis 31:1662–1665

    Article  PubMed  CAS  Google Scholar 

  21. He H, Cong W, Jiang C, Pu J, You W, Gao H, Zhu Z, Jin L, Li X (2010) A user-friendly alternative to formaldehyde-based DNA silver-staining method on polyacrylamide gels. Electrophoresis 31:2416–2421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Anderson, J., Wright, D., Meksem, K. (2013). Agarose Gel Electrophoresis and Polyacrylamide Gel Electrophoresis for Visualization of Simple Sequence Repeats. In: Kantartzi, S. (eds) Microsatellites. Methods in Molecular Biology, vol 1006. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-389-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-389-3_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-388-6

  • Online ISBN: 978-1-62703-389-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics