Skip to main content

Using Pure Protein to Build a Multiple Reaction Monitoring Mass Spectrometry Assay for Targeted Detection and Quantitation

  • Protocol
  • First Online:
Heart Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1005))

Abstract

Multiple reaction monitoring (MRM) is an increasingly popular mass spectrometry-based method to simultaneously detect and quantify multiple proteins. MRM is particularly useful for validating biomarkers discovered with a mass spectrometer and any analite discovered by MS can be monitored by MR because an MRM assay can be developed without the need to generate specific antibodies. In this chapter, we present a robust and systematic procedure to rapidly build a high-sensitivity MRM assay using purified protein as the starting material. Theoretical digestion of the protein with trypsin is used to identify mass spectrometry-­compatible peptides and to generate preliminary MRM transitions to detect these peptides. Peptides generated by trypsin cleavage of the actual protein are then run on a liquid chromatography column coupled to a triple quadrupole mass spectrometer, which is programmed with the preliminary transitions. Whenever a transition is detected, it triggers dissociation of the corresponding peptide and collection of a full mass range scan of the resulting fragment ions. From this scan, fragment ions yielding the strongest and most reproducible signals are utilized to design empirical MRM transitions. The assay is further refined by optimizing the collision energy and creating a standard curve to measure sensitivity. Once MRM transitions have been established for a particular protein, they can be combined with transitions for other target proteins to create multiplex assays and used to quantify proteins in samples arising from serum, urine, subcellular fractions, or any other specemen of interest.

Eric Grote and Qin Fu have equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573–588

    PubMed  CAS  Google Scholar 

  2. Lange V, Malmstrom JA, Didion J, King NL, Johansson BP, Schafer J et al (2008) Targeted quantitative analysis of Streptococcus Pyogenes virulence factors by multiple reaction monitoring. Mol Cell Proteomics 7:1489–1500

    Article  PubMed  CAS  Google Scholar 

  3. Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8:1860–1877

    Article  PubMed  CAS  Google Scholar 

  4. Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM et al (2009) ­Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based ­measurements of proteins in plasma. Nat Biotechnol 27:633–641

    Article  PubMed  CAS  Google Scholar 

  5. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940–6945

    Article  PubMed  CAS  Google Scholar 

  6. Stahl-Zeng J, Lange V, Ossola R, Eckhardt K, Krek W, Aebersold R, Domon B (2007) High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 6:1809–1817

    Article  PubMed  CAS  Google Scholar 

  7. Unwin RD, Griffiths JR, Leverentz MK, Grallert A, Hagan IM, Whetton AD (2005) Multiple reaction monitoring to identify sites of protein phosphorylation with high ­sensitivity. Mol Cell Proteomics 4:1134–1144

    Article  PubMed  CAS  Google Scholar 

  8. Xu P, Peng J (2006) Dissecting the ubiquitin pathway by mass spectrometry. Biochim Biophys Acta 1764:1940–1947

    Article  PubMed  CAS  Google Scholar 

  9. Nicol GR, Han M, Kim J, Birse CE, Brand E, Nguyen A et al (2008) Use of an immunoaffinity-mass    spectrometry-based approach for the quantification of protein biomarkers from serum samples of lung cancer patients. Mol Cell Proteomics 7:1974–1982

    Article  PubMed  CAS  Google Scholar 

  10. Mead JA, Bianco L, Ottone V, Barton C, Kay RG, Lilley KS, Bond NJ, Bessant C (2009) MRMaid, the web-based tool for designing multiple reaction monitoring (MRM) transitions. Mol Cell Proteomics 8:696–705

    Article  PubMed  CAS  Google Scholar 

  11. Chem Mead JA, Bianco L, Bessant C (2010) Mining proteomic MS/MS data for MRM transitions. Methods Mol Biol 604:187–199

    Article  PubMed  Google Scholar 

  12. Dhillon OS, Narayan HK, Quinn PA, Squire IB, Davies JE, Ng LL (2011) Interleukin 33 and ST2 in non-ST-elevation myocardial infarction: comparison with Global Registry of Acute Coronary Events Risk Scoring and NT-proBNP. Am Heart J 161:1163–1170

    Article  PubMed  CAS  Google Scholar 

  13. Hsu CL, Neilsen CV, Bryce PJ (2010) IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS One 5:e11944

    Article  PubMed  Google Scholar 

  14. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson WO, GABRIEL Consortium (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363:1211–1221

    Article  PubMed  CAS  Google Scholar 

  15. Kim MK, Lee TH, Suh JH, Eom HY, Min JW, Yeom H, Kim HJ et al (2010) Development and validation of a liquid chromatography-tandem mass spectrometry method for the determination of goserelin in rabbit plasma. J Chromatogr B Analyt Technol Biomed Life Sci 878:2235–2242

    Article  PubMed  CAS  Google Scholar 

  16. Sleno L, Volmer DA (2004) Ion activation methods for tandem mass spectrometry. J Mass Spectrom 39:1091–1112

    Article  PubMed  CAS  Google Scholar 

  17. Fu Q, Zhu J, Van Eyk JE (2010) Comparison of multiplex immunoassay platforms. Clin Chem 56:314–318

    Article  PubMed  CAS  Google Scholar 

  18. Almeida AM, Castel-Branco MM, Falcao AC (2002) Linear regression for calibration lines revisited: weighting schemes for bioanalytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 774:215–222

    Article  PubMed  CAS  Google Scholar 

  19. Afzal V, Huang JT, Atrih A, Crowther DJ (2011) PChopper: high throughput peptide prediction for MRM/SRM transition design. BMC Bioinformatics 12:338

    Article  PubMed  CAS  Google Scholar 

  20. Cham Mead JA, Bianco L, Bessant C (2010) Free computational resources for designing selected reaction monitoring transitions. Proteomics 10:1106–1126

    Article  PubMed  Google Scholar 

  21. Stergachis AB, MacLean B, Lee K, Stamatoyannopoulos JA, MacCoss MJ (2011) Rapid empirical discovery of optimal peptides for targeted proteomics. Nat Methods 8:1041–1043

    Article  PubMed  CAS  Google Scholar 

  22. Winkler C, Denker K, Wortelkamp S, Sickmann A (2007) Silver- and Coomassie-staining ­protocols: detection limits and compatibility with ESI MS. Electrophoresis 28:2095–2099

    Article  PubMed  CAS  Google Scholar 

  23. Johnson EL, Reynolds DL, Wright DS, Pachla LA (1988) Biological sample preparation and data reduction concepts in pharmaceutical analysis. J Chromatogr Sci 26:372–379

    Article  PubMed  CAS  Google Scholar 

  24. Lebert D, Dupuis A, Garin J, Bruley C, Brun V (2011) Production and use of stable isotope-labeled proteins for absolute quantitative proteomics. Methods Mol Biol 753:93–115

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grote, E., Fu, Q., Ji, W., Liu, X., Van Eyk, J.E. (2013). Using Pure Protein to Build a Multiple Reaction Monitoring Mass Spectrometry Assay for Targeted Detection and Quantitation. In: Vivanco, F. (eds) Heart Proteomics. Methods in Molecular Biology, vol 1005. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-386-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-386-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-385-5

  • Online ISBN: 978-1-62703-386-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics