Skip to main content

Highly Efficient Directed Differentiation of Human Induced Pluripotent Stem Cells into Cardiomyocytes

  • Protocol
  • First Online:
Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 997))

Abstract

Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are a novel source of cells for patient-specific cardiotoxicity drug testing, drug discovery, disease modeling, and regenerative medicine. We describe a versatile and cost-effective protocol for in vitro cardiac differentiation that is effective for a wide variety of hiPSC and human embryonic stem cell (hESC) lines. This highly optimized protocol produces contracting human embryoid bodies (hEB) with a near total efficiency of 94.7  ±  2.4% in less than 9 days, and minimizes the variability in cardiac differentiation commonly observed between various hiPSC and hESC lines. The contracting hEB derived using these methods contain high percentages of pure functional cardiomyocytes, highly reproducible electrophysiological profiles, and pharmacologic responsiveness to known cardioactive drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107:2733–2740

    Article  PubMed  CAS  Google Scholar 

  2. Passier R, Oostwaard DW, Snapper J, Kloots J, Hassink RJ, Kuijk E, Roelen B, de la Riviere AB, Mummery C (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23:772–780

    Article  PubMed  CAS  Google Scholar 

  3. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, Reinecke H, Xu C, Hassanipour M, Police S, O’Sullivan C, Collins L, Chen Y, Minami E, Gill EA, Ueno S, Yuan C, Gold J, Murry CE (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    Article  PubMed  CAS  Google Scholar 

  4. Zhu WZ, Van Biber B, Laflamme MA (2011) Methods for the derivation and use of cardiomyocytes from human pluripotent stem cells. Methods Mol Biol 767:419–431

    Article  PubMed  CAS  Google Scholar 

  5. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A, Livne E, Binah O, Itskovitz-Eldor J, Gepstein L (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    PubMed  CAS  Google Scholar 

  6. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ, Kennedy M, Henckaerts E, Bonham K, Abbott GW, Linden RM, Field LJ, Keller GM (2008) Human cardiovascular progenitor cells develop from a KDR  +  embryonic-stem-cell-derived population. Nature 453:524–528

    Article  PubMed  CAS  Google Scholar 

  7. Kattman SJ, Witty AD, Gagliardi M, Dubois NC, Niapour M, Hotta A, Ellis J, Keller G (2011) Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. Cell Stem Cell 8:228–240

    Article  PubMed  CAS  Google Scholar 

  8. Burridge PW, Anderson D, Priddle H, Barbadillo Munoz MD, Chamberlain S, Allegrucci C, Young LE, Denning C (2007) Improved human embryonic stem cell embryoid body homogeneity and cardiomyocyte differentiation from a novel V-96 plate aggregation system highlights interline variability. Stem Cells 25:929–938

    Article  PubMed  CAS  Google Scholar 

  9. Burridge PW, Thompson S, Millrod MA, Weinberg S, Yuan X, Peters A, Mahairaki V, Koliatsos VE, Tung L, Zambidis ET (2011) A universal system for highly efficient cardiac differentiation of human induced pluripotent stem cells that eliminates interline variability. PLoS One 6:e18293

    Article  PubMed  CAS  Google Scholar 

  10. Denning C, Allegrucci C, Priddle H, Barbadillo-Munoz MD, Anderson D, Self T, Smith NM, Parkin CT, Young LE (2006) Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. Int J Dev Biol 50:27–37

    Article  PubMed  CAS  Google Scholar 

  11. Ng ES, Davis R, Stanley EG, Elefanty AG (2008) A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Protoc 3:768–776

    Article  PubMed  CAS  Google Scholar 

  12. Ng ES, Davis RP, Azzola L, Stanley EG, Elefanty AG (2005) Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 106:1601–1603

    Article  PubMed  CAS  Google Scholar 

  13. Wiles MV, Johansson BM (1999) Embryonic stem cell development in a chemically defined medium. Exp Cell Res 247:241–248

    Article  PubMed  CAS  Google Scholar 

  14. Yu P, Pan G, Yu J, Thomson JA (2011) FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8:326–334

    Article  PubMed  CAS  Google Scholar 

  15. Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  PubMed  CAS  Google Scholar 

  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  17. Reubinoff BE, Pera MF, Fong CY, Trounson A, Bongso A (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    Article  PubMed  CAS  Google Scholar 

  18. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Maryland Stem Cell Research Fund (E.T.Z.), and grants from the NHLBI Progenitor Biology Consortium (National Institutes of Health U01HL099775 and U01HL100397 (E.T.Z)). P.W.B. was supported by a postdoctoral fellowship grant from the Maryland Stem Cell Research Fund. We are grateful to Michal Millrod for careful editing of this manuscript.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Burridge, P.W., Zambidis, E.T. (2013). Highly Efficient Directed Differentiation of Human Induced Pluripotent Stem Cells into Cardiomyocytes. In: Lakshmipathy, U., Vemuri, M. (eds) Pluripotent Stem Cells. Methods in Molecular Biology, vol 997. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-348-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-348-0_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-347-3

  • Online ISBN: 978-1-62703-348-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics