Skip to main content

The Application of the Cre-loxP System for Generating Multiple Knock-out and Knock-in Targeted Loci

  • Protocol
  • First Online:
Dictyostelium discoideum Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 983))

Abstract

Dictyostelium discoideum is an exceptionally powerful eukaryotic model to study many aspects of growth, development, and fundamental cellular processes. Its small-sized, haploid genome allows highly efficient targeted homologous recombination for gene disruption and knock-in epitope tagging. We previously described a robust system for the generation of multiple gene mutations in Dictyostelium by recycling the Blasticidin S selectable marker after transient expression of the Cre recombinase. We have now further optimized the system for higher efficiency and, additionally, coupled it to both, knock-out and knock-in gene targeting, allowing the characterization of multiple and cooperative gene functions in a single cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gaudet P, Fey P, Basu S, Bushmanova YA, Dodson R, Sheppard KA, Just EM, Kibbe WA, Chisholm RL (2011) dictyBase update 2011: web 2.0 functionality and the initial steps towards a genome portal for the Amoebozoa. Nucleic Acids Res 39:D620–D624

    Article  PubMed  CAS  Google Scholar 

  2. Heidel AJ, Lawal HM, Felder M, Schilde C, Helps NR, Tunggal B, Rivero F, John U, Schleicher M, Eichinger L, Platzer M, Noegel AA, Schaap P, Glöckner G (2011) Phylogeny-wide analysis of social amoeba genomes highlights ancient origins for complex intercellular communication. Genome Res 21:1882–1891

    Article  PubMed  CAS  Google Scholar 

  3. Rot G, Parikh A, Curk T, Kuspa A, Shaulsky G, Zupan B (2009) dictyExpress: a Dictyostelium discoideum gene expression database with an explorative data analysis web-based interface. BMC Bioinformatics 10:265

    Article  PubMed  Google Scholar 

  4. Kuspa A (2006) Restriction enzyme-mediated integration (REMI) mutagenesis. Methods Mol Biol 346:201–209

    PubMed  CAS  Google Scholar 

  5. King J, Insall R (2006) Parasexual genetics using axenic cells. Methods Mol Biol 346:125–135

    PubMed  CAS  Google Scholar 

  6. Faix J, Kreppel L, Shaulsky G, Schleicher M, Kimmel AR (2004) A rapid and efficient method to generate multiple gene disruptions in Dictyostelium discoideum using a single selectable marker and the Cre-loxP system. Nucleic Acids Res 32:e143

    Article  PubMed  Google Scholar 

  7. Kimmel AR, Faix J (2006) Generation of multiple knockout mutants using the Cre-loxP system. Methods Mol Biol 346:187–199

    PubMed  Google Scholar 

  8. Linkner J, Nordholz B, Junemann A, Winterhoff M, Faix J (2012) Highly effective removal of floxed Blasticidin S resistance cassettes from Dictyostelium discoideum mutants by extrachromosomal expression of Cre. Eur J Cell Biol 91:156–160

    Article  PubMed  CAS  Google Scholar 

  9. Sutoh K (1993) A transformation vector for Dictyostelium discoideum with a new selectable marker bsr. Plasmid 30:150–154

    Article  PubMed  CAS  Google Scholar 

  10. Sauer B (2002) Cre/lox: one more step in the taming of the genome. Endocrine 19:221–228

    Article  PubMed  CAS  Google Scholar 

  11. McMains VC, Myre M, Kreppel L, Kimmel AR (2010) Dictyostelium possesses highly diverged presenilin/gamma-secretase that regulates growth and cell-fate specification and can accurately process human APP: a system for functional studies of the presenilin/gamma-secretase complex. Dis Model Mech 3:581–594

    Article  PubMed  CAS  Google Scholar 

  12. Hoeller O, Kay RR (2007) Chemotaxis in the absence of PIP3 gradients. Curr Biol 17:813–817

    Article  PubMed  CAS  Google Scholar 

  13. Koch KV, Reinders Y, Ho TH, Sickmann A, Gräf R (2006) Identification and isolation of Dictyostelium microtubule-associated protein interactors by tandem affinity purification. Eur J Cell Biol 85:1079–1090

    Article  PubMed  CAS  Google Scholar 

  14. Liao X-H, Buggey J, Kimmel AR (2010) Chemotactic activation of Dictyostelium AGC-family kinases AKT and PKBR1 requires separate but coordinated functions of PDK1 and TORC2. J Cell Sci 123:983–992

    Article  PubMed  CAS  Google Scholar 

  15. Rosel D, Khurana T, Majithia A, Huang X, Bhandari R, Kimmel AR (2012) TOR complex 2 (TORC2) in Dictyostelium suppresses phagocytic nutrient capture independently of TORC1-mediated nutrient sensing. J Cell Sci 125:37–48

    Article  PubMed  CAS  Google Scholar 

  16. Veltman DM, Keizer-Gunnink I, van Haastert PJ (2009) An extrachromosomal, inducible expression system for Dictyostelium discoideum. Plasmid 61:119–125

    Article  PubMed  CAS  Google Scholar 

  17. Kuhlmann M, Popova B, Nellen WB (2006) RNA interference and antisense-mediated gene silencing in Dictyostelium. Methods Mol Biol 346:211–226

    PubMed  Google Scholar 

  18. Robinson DN, Spudich JA (2000) Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. J Cell Biol 150:823–838

    Article  PubMed  CAS  Google Scholar 

  19. Spann TP, Brock DA, Lindsey DF, Wood SA, Gomer RH (1996) Mutagenesis and gene identification in Dictyostelium by shotgun antisense. Proc Natl Acad Sci U S A 93:5003–5007

    Article  PubMed  CAS  Google Scholar 

  20. Bretsche MS, Clotworthy M (2007) Using single loxP sites to enhance homologous recombination: ts mutants in Sec1 of Dictyostelium discoideum. PLoS One 2:e724

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alexander Junemann and Moritz Winterhoff for thoroughly testing plasmid pTX-NLS-Cre and Drs. Katrin Koch and Ralf Gräf for their TAP-tag plasmid. This research was supported by Deutsche Forschungsgemeinschaft (Fa 330/4-2, Fa 330/5-1), the Intramural Research Program of the National Institutes of Health, the National Institute of Diabetes and Digestive and Kidney Diseases, and the WellcomeTrust/NIH Program Studentship to J.L.P.; J.L.P. is joint student with Dr. Adrian Harwood (Cardiff University) and A.R.K. (NIH). There are no conflicts or competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Faix or Alan R. Kimmel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Faix, J., Linkner, J., Nordholz, B., Platt, J.L., Liao, XH., Kimmel, A.R. (2013). The Application of the Cre-loxP System for Generating Multiple Knock-out and Knock-in Targeted Loci. In: Eichinger, L., Rivero, F. (eds) Dictyostelium discoideum Protocols. Methods in Molecular Biology, vol 983. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-302-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-302-2_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-301-5

  • Online ISBN: 978-1-62703-302-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics