Skip to main content

Approaches to Enhancing the Sensitivity of Carbohydrate Separations in Capillary Electrophoresis

  • Protocol
  • First Online:
Capillary Electrophoresis of Biomolecules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 984))

Abstract

Electrophoresis in both capillaries (CE) and microchips (ME) is an extremely powerful liquid phase-separation technique that is indispensable for the separation of carbohydrates. It is capable of separating both small mono- and disaccharides, through to more complex oligo- and polysaccharides, with high resolution, but as with all CE and ME separations, the detection limits are often inferior to those that can be achieved with liquid chromatographic methods. One avenue to address this is to use an on-line concentration strategy. Various approaches have been developed over the past 20 years, and this chapter will highlight their application to improve the sensitivity of carbohydrate separations in both CE and ME.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey DJ (2011) Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B 879:1196–1225

    Article  CAS  Google Scholar 

  2. Kazarian AA, Hilder EF, Breadmore MC (2010) Fluorophores and chromophores for the separation of carbohydrates by CE. In: Volpi N (ed) Capillary electrophoresis of carbohydrates: from monosaccharides to complex polysaccharides. Humana Press, New York, pp 23–52

    Google Scholar 

  3. Evangelista RA, Liu MS, Chen FTA (1995) Characterization of 9-aminopyrene-1,4,6-trisulfonate-derivatized sugars by capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 67:2239–2245

    Article  CAS  Google Scholar 

  4. Lv Z, Sun Y, Wang Y, Jiang T, Yu G (2005) Ultrasensitive capillary electrophoresis of oligoguluronates with laser-induced fluorescence detection. Chromatographia 61:615–618

    Article  Google Scholar 

  5. García Moreno MDV, Castro Mejías R, Natera Marín R, García Barroso C (2002) Analysis of sugar acids by capillary electrophoresis with indirect UV detection. Application to samples of must and wine. Euro Food Res Technol 215:255–259

    Article  Google Scholar 

  6. Lee YH, Lin TI, Luh TY (1996) Determination of carbohydrates by high-performance capillary electrophoresis with indirect absorbance detection. J Chromatogr B 681:87–97

    Article  CAS  Google Scholar 

  7. Monahan J, Gewirth AA, Nuzzo RG (2002) Indirect fluorescence detection of simple sugars via high-pH electrophoresis in poly(dimethylsiloxane) microfluidic chips. Electrophoresis 23:2347–2354

    Article  PubMed  CAS  Google Scholar 

  8. Ramírez SC, Carretero AS, Blanco CC, De Castro MHB, Gutiérrez AF (2005) Indirect determination of carbohydrates in wort samples and dietetic products by capillary electrophoresis. J Sci Food Agri 85:517–521

    Article  Google Scholar 

  9. Cheng X, Zhang S, Zhang H, Wang Q, He P, Fang Y (2008) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a nano-nickel oxide modified carbon paste electrode. Food Chem 106:830–835

    Article  CAS  Google Scholar 

  10. Cao Y, Wang Y, Chen X, Ye J (2004) Study on sugar profile of rice during ageing by capillary electrophoresis with electrochemical detection. Food Chem 86:131–136

    Article  CAS  Google Scholar 

  11. García CD, Henry CS (2003) Direct determination of carbohydrates, amino acids, and antibiotics by microchip electrophoresis with pulsed amperometric detection. Anal Chem 75:4778–4783

    Article  PubMed  Google Scholar 

  12. Huang X, Kok WT (1995) Determination of sugars by capillary electrophoresis with electrochemical detection using cuprous oxide modified electrodes. J Chromatogr A 707:335–342

    Article  CAS  Google Scholar 

  13. Colón LA, Dadoo R, Zare RN (1993) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal Chem 65:476–481

    Article  Google Scholar 

  14. Maxwell EJ, Ratnayake C, Jayo R, Zhong X, Chen DDY (2011) A promising capillary electrophoresis-electrospray ionization-mass spectrometry method for carbohydrate analysis. Electrophoresis 32:2161–2166

    Article  PubMed  CAS  Google Scholar 

  15. Grundmann M, Rothenhöfer M, Bernhardt G, Buschauer A, Matysik FM (2012) Fast counter-electroosmotic capillary electrophoresis-time-of-flight mass spectrometry of hyaluronan oligosaccharides. Anal Bioanal Chem 402(8):2617–2623

    Article  PubMed  CAS  Google Scholar 

  16. Campa C, Coslovi A, Flamigni A, Rossi M (2006) Overview on advances in capillary electrophoresis-mass spectrometry of carbohydrates: a tabulated review. Electrophoresis 27:2027–2050

    Article  PubMed  CAS  Google Scholar 

  17. Zamfir A, Seidler DG, Schönherr E, Kresse H, Peter-Katalinić J (2004) On-line sheathless capillary electrophoresis/nanoelectrospray ionization-tandem mass spectrometry for the analysis of glycosaminoglycan oligosaccharides. Electrophoresis 25:2010–2016

    Article  PubMed  CAS  Google Scholar 

  18. Koller A, Khandurina J, Li J, Kreps J, Schieltz D, Guttman A (2004) Analysis of high-mannose-type oligosaccharides by microliquid chromatography-mass spectrometry and capillary electrophoresis. Electrophoresis 25:2003–2009

    Article  PubMed  CAS  Google Scholar 

  19. Klampfl CW, Buchberger W (2001) Determination of carbohydrates by capillary electrophoresis with electrospray-mass spectrometric detection. Electrophoresis 22:2737–2742

    Article  PubMed  CAS  Google Scholar 

  20. Breadmore MC (2007) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips. Electrophoresis 28:254–281

    Article  PubMed  CAS  Google Scholar 

  21. Breadmore MC, Dawod M, Quirino JP (2011) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis 32:127–148

    Article  PubMed  CAS  Google Scholar 

  22. Breadmore MC, Haddad PR (2001) Approaches to enhancing the sensitivity of capillary electrophoresis methods for the determination of inorganic and small organic anions. Electrophoresis 22:2464–2489

    Article  PubMed  CAS  Google Scholar 

  23. Breadmore MC, Thabano JRE, Dawod M, Kazarian AA, Quirino JP, Guijt RM (2009) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2006–2008). Electrophoresis 30:230–248

    Article  PubMed  CAS  Google Scholar 

  24. Mikkers FEP, Everaerts FM, Verheggen T (1979) High-Performance Zone Electrophoresis. J Chromatogr 169:11–20

    Article  CAS  Google Scholar 

  25. Burgi DS, Chien RL (1991) Optimization in Sample Stacking for High-Performance Capillary Electrophoresis. Anal Chem 63:2042–2047

    Article  CAS  Google Scholar 

  26. Burgi DS, Chien RL (1991) Application of Sample Stacking to Gravity Injection in Capillary Electrophoresis. J Microcol 3:199–202

    Article  CAS  Google Scholar 

  27. Haglund H, Tiselius A (1950) Zone Electrophoresis in a Glass Powder Column—Preliminary Report. Acta Chem Scand 4:957–962

    Article  CAS  Google Scholar 

  28. Kamoda S, Nakanishi Y, Kinoshita M, Ishikawa R, Kakehi K (2006) Analysis of glycoprotein-derived oligosaccharides in glycoproteins detected on two-dimensional gel by capillary electrophoresis using on-line concentration method. J Chromatogr A 1106:67–74

    Article  PubMed  CAS  Google Scholar 

  29. Zhang CX, Thormann W (1996) Head-column field-amplified sample stacking in binary system capillary electrophoresis: a robust approach providing over 1000-fold sensitivity enhancement. Anal Chem 68:2523–2532

    Article  PubMed  CAS  Google Scholar 

  30. Zhang CX, Thormann W (1998) Head-column field-amplified sample stacking in binary system capillary electrophoresis. 2. Optimization with a preinjection plug and application to micellar electrokinetic chromatography. Anal Chem 70:540–548

    Article  PubMed  CAS  Google Scholar 

  31. Chien RL, Burgi DS (1992) Sample Stacking of an Extremely Large Injection Volume in High-Performance Capillary Electrophoresis. Anal Chem 64:1046–1050

    Article  CAS  Google Scholar 

  32. He Y, Lee HK (1999) Large-volume sample stacking in acidic buffer for analysis of small organic and inorganic anions by capillary electrophoresis. Anal Chem 71:995–1001

    Article  PubMed  CAS  Google Scholar 

  33. Kawai T, Watanabe M, Sueyoshi K, Kitagawa F, Otsuka K (2012) Highly sensitive oligosaccharide analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump. J Chromatogr A 1232:52–58

    Article  PubMed  CAS  Google Scholar 

  34. Kawai T, Sueyoshi K, Kitagawa F, Otsuka K (2010) Microchip electrophoresis of oligosaccharides using large-volume sample stacking with an electroosmotic flow pump in a single channel. Anal Chem 82:6504–6511

    Article  PubMed  CAS  Google Scholar 

  35. Auriola S, Thibault P, Sadovskaya I, Altman E (1998) Enhancement of sample loadings for the analysis of oligosaccharides isolated from Pseudomonas aeruginosa using transient isotachophoresis and capillary zone electrophoresis—electrospray—mass spectrometry. Electrophoresis 19:2665–2676

    Article  PubMed  CAS  Google Scholar 

  36. Aebersold R, Morrison HD (1990) Analysis of Dilute Peptide Samples by Capillary Zone Electrophoresis. J Chromatogr 516:79–88

    Article  PubMed  CAS  Google Scholar 

  37. Britz-Mckibbin P, Bebault GM, Chen DDY (2000) Velocity-difference induced focusing of nucleotides in capillary electrophoresis with a dynamic pH junction. Anal Chem 72:1729–1735

    Article  PubMed  CAS  Google Scholar 

  38. Britz-Mckibbin P, Chen DDY (2000) Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal Chem 72:1242–1252

    Article  PubMed  CAS  Google Scholar 

  39. Kazarian AA, Hilder EF, Breadmore MC (2011) Online sample pre-concentration via dynamic pH junction in capillary and microchip electrophoresis. J Sep Sci 34:2800–2821

    Article  PubMed  CAS  Google Scholar 

  40. Kazarian AA, Hilder EF, Breadmore MC (2008) Utilisation of pH stacking in conjunction with a highly absorbing chromophore, 5-aminofluorescein, to improve the sensitivity of capillary electrophoresis for carbohydrate analysis. J Chromatogr A 1200:84–91

    Article  PubMed  CAS  Google Scholar 

  41. Kazarian AA, Hilder EF, Breadmore MC (2010) Capillary electrophoretic separation of mono- and di-saccharides with dynamic pH junction and implementation in microchips. Analyst 135:1970–1978

    Article  PubMed  CAS  Google Scholar 

  42. Kazarian AA, Smith JA, Hilder EF, Breadmore MC, Quirino JP, Suttil J (2010) Development of a novel fluorescent tag O-2-[aminoethyl)fluorescein for the electrophoretic separation of oligosaccharides. Anal Chim Acta 662:206–213

    Article  PubMed  CAS  Google Scholar 

  43. Quirino JP, Kim JB, Terabe S (2002) Sweeping: concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis. J Chromatogr A 965:357–373

    Article  PubMed  CAS  Google Scholar 

  44. Quirino JP, Terabe S (1999) Sweeping with an enhanced electric field of neutral analyte zones in electrokinetic chromatography. J High Resol Chromatogr 22:367–372

    Article  CAS  Google Scholar 

  45. Quirino JP, Terabe S (1999) Sweeping of analyte zones in electrokinetic chromatography. Anal Chem 71:1638–1644

    Article  CAS  Google Scholar 

  46. Quirino JP, Terabe S, Bocek P (2000) Sweeping of neutral analytes in electrokinetic chromatography with high-salt-containing matrixes. Anal Chem 72:1934–1940

    Article  PubMed  CAS  Google Scholar 

  47. Aranas AT, Guidote AM Jr, Quirino JP (2009) Sweeping and new on-line sample preconcentration techniques in capillary electrophoresis. Anal Bioanal Chem 394:175–185

    Article  PubMed  CAS  Google Scholar 

  48. Quirino JP, Terabe S (2001) Sweeping of neutral analytes via complexation with borate in capillary zone electrophoresis. Chromato-graphia 53:285–289

    Article  CAS  Google Scholar 

  49. Yamamoto S, Hirakawa S, Suzuki S (2008) In situ fabrication of ionic polyacrylamide-based preconcentrator on a simple poly(methyl methacrylate) microfluidic chip for capillary electrophoresis of anionic compounds. Anal Chem 80:8224–8230

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The author would like to thank the Australian Research Council for funding and provision of a QEII Fellowship (DP0984745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Breadmore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Breadmore, M.C. (2013). Approaches to Enhancing the Sensitivity of Carbohydrate Separations in Capillary Electrophoresis. In: Volpi, N., Maccari, F. (eds) Capillary Electrophoresis of Biomolecules. Methods in Molecular Biology, vol 984. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-296-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-296-4_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-295-7

  • Online ISBN: 978-1-62703-296-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics