Skip to main content

Regulation of Dopamine Transporter Expression by Neuronal Activity

  • Protocol
  • First Online:
Dopamine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 964))

  • 2276 Accesses

Abstract

Actions of extracellular dopamine released in the central nervous system are primarily terminated by the dopamine transporter. This protein is also a target for therapeutic and abused psychostimulant drugs. Different methods used to study dopamine transporter function, its expression, and intracellular signaling in neurons are described in this chapter. Function of the dopamine transporter in mesencephalic primary cultures can be measured by dopamine uptake assay. Expression of the transporter protein and mRNA are analyzed by western blots and quantitative RT-PCR, respectively. Finally, methods to study neuronal activity-dependent changes in Ca2+⁄calmodulin-dependent protein (CaM) kinase activity in dopamine neurons are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gainetdinov RR, Jones SR, Fumagalli F, Wightman RM, Caron MG (1998) Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Res Rev 26:148–153

    Article  PubMed  CAS  Google Scholar 

  2. Benoit-Marand M, Jaber M, Gonon F (2000) Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences. Eur J Neurosci 12:2985–2992

    Article  PubMed  CAS  Google Scholar 

  3. Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85:5274–5278

    Article  PubMed  Google Scholar 

  4. Volkow ND, Wang G, Fowler JS, Logan J, Gerasimov M, Maynard L, Ding Y, Gatley SJ, Gifford A, Franceschi D (2001) Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 21(2):RC121, 1–5

    PubMed  CAS  Google Scholar 

  5. Newberg A, Amsterdam J, Shults J (2007) Dopamine transporter density may be associated with the depressed affect in healthy subjects. Nucl Med Commun 28:3–6

    Article  PubMed  CAS  Google Scholar 

  6. Volkow ND, Wang GJ, Newcorn J, Fowler JS, Telang F, Solanto MV, Logan J, Wong C, Ma Y, Swanson JM, Schulz K, Pradhan K (2007) Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 34:1182–1190

    Article  PubMed  Google Scholar 

  7. Dresel S, Krause J, Krause KH, LaFougere C, Brinkbaumer K, Kung HF, Hahn K, Tatsch K (2000) Attention deficit hyperactivity disorder: binding of (99mTc)TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 27:1518–1524

    Article  PubMed  CAS  Google Scholar 

  8. Feron FJ, Hendriksen JG, van Kroonenburgh MJ, Blom-Coenjaerts C, Kessels AG, Jolles J, Weber WE, Vles JS (2005) Dopamine transporter in attention-deficit hyperactivity disorder normalizes after cessation of methylphenidate. Pediatr Neurol 33:179–183

    Article  PubMed  Google Scholar 

  9. Bezard E, Dovero S, Belin D, Duconger S, Jackson-Lewis V, Przedborski S, Piazza PV, Gross CE, Jaber M (2003) Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci 23:10999–11007

    PubMed  CAS  Google Scholar 

  10. Padmanabhan S, Lambert NA, Prasad BM (2008) Activity-dependent regulation of the dopamine transporter is mediated by CaM kinase signaling. Eur J Neurosci 28:2017–2027

    Article  PubMed  Google Scholar 

  11. Padmanabhan S, Prasad BM (2009) Sustained depolarization decreases calcium/calmodulin-dependent protein kinase II activity and gene expression in dopamine neurons. Neuroscience 163:277–285

    Article  PubMed  CAS  Google Scholar 

  12. Rayport S, Sulzer D, Shi WX, Sawasdikosol S, Monaco J, Batson D, Rajendran G (1992) Identified postnatal mesolimbic dopamine neurons in culture: morphology and electrophysiology. J Neurosci 12:4264–4280

    PubMed  CAS  Google Scholar 

  13. Prasad BM, Amara SG (2001) The dopamine transporter in mesencephalic cultures is refractory to physiological changes in membrane voltage. J Neurosci 21:7561–7567

    PubMed  CAS  Google Scholar 

  14. Vaillant AR, Zanassi P, Walsh GS, Aumont A, Alonso A, Miller FD (2002) Signaling mechanisms underlying reversible, activity-dependent dendrite formation. Neuron 34:985–998

    Article  PubMed  CAS  Google Scholar 

  15. Kelleher RJ III, Govindarajan A, Jung HY, Kang H, Tonegawa S (2004) Translational control by MAPK signaling in long-term synaptic plasticity and memory. Cell 116:467–479

    Article  PubMed  CAS  Google Scholar 

  16. Haycock JW, Haycock DA (1991) Tyrosine hydroxylase in rat brain dopaminergic nerve terminals. Multiple-site phosphorylation in vivo and in synaptosomes. J Biol Chem 266:5650–5657

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balakrishna M. Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Padmanabhan, S., Pham, T., Prasad, B.M. (2013). Regulation of Dopamine Transporter Expression by Neuronal Activity. In: Kabbani, N. (eds) Dopamine. Methods in Molecular Biology, vol 964. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-251-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-251-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-250-6

  • Online ISBN: 978-1-62703-251-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics