Skip to main content

Determine the Effect of p53 on Chemosensitivity

  • Protocol
  • First Online:
p53 Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 962))

Abstract

The p53 tumor suppressor protein plays a central role in mediating the cellular response to a variety of stresses. Activation of p53 signaling will trigger cell cycle arrest or apoptosis in normal cells, depending on such factors as cell type and genetic context. The ability of a cell to circumvent either of these p53-directed outcomes leads to inappropriate proliferation, thereby contributing to the development of cancer. As such, tumors frequently escape the apoptotic pathway in response to cell stress. DNA-damaging agents, however, achieve significant tumor cytotoxicity in spite of this hallmark characteristic. Tumors treated with DNA-damaging drugs often undergo alternate forms of cell death, such as senescence or mitotic catastrophe, in addition to apoptosis that may ultimately lead to regression. Although not a predictor of chemotherapy response in patients per se, p53 status in tumor-derived cells is frequently a determinant of the death pathway promoted by these agents. The cytotoxic effects of DNA-damaging agents can be readily appreciated using such tools as cell cycle analysis, phopsho-H3Ser10 immunoblotting, and annexin V detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart ZA, Pietenpol JA (2001) p53 Signaling and cell cycle checkpoints. Chem Res Toxicol 14:243–263

    Article  PubMed  CAS  Google Scholar 

  2. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604

    Article  PubMed  CAS  Google Scholar 

  3. Sansom OJ, Clarke AR (2000) P53 null mice: damaging the hypothesis? Mutat Res 452:149–162

    Article  PubMed  CAS  Google Scholar 

  4. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  5. Lowe SW, Ruley HE, Jacks T, Housman DE (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967

    Article  PubMed  CAS  Google Scholar 

  6. Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849

    Article  PubMed  CAS  Google Scholar 

  7. Gudkov AV, Komarova EA (2003) The role of p53 in determining sensitivity to radiotherapy. Nat Rev Cancer 3:117–129

    Article  PubMed  CAS  Google Scholar 

  8. Merritt AJ, Allen TD, Potten CS, Hickman JA (1997) Apoptosis in small intestinal epithelial from p53-null mice: evidence for a delayed, p53-independent G2/M-associated cell death after gamma-irradiation. Oncogene 14:2759–2766

    Article  PubMed  CAS  Google Scholar 

  9. Han JW, Dionne CA, Kedersha NL, Goldmacher VS (1997) p53 status affects the rate of the onset but not the overall extent of doxorubicin-induced cell death in rat-1 fibroblasts constitutively expressing c-Myc. Cancer Res 57:176–182

    PubMed  CAS  Google Scholar 

  10. Tannock IF, Lee C (2001) Evidence against apoptosis as a major mechanism for reproductive cell death following treatment of cell lines with anti-cancer drugs. Br J Cancer 84:100–105

    Article  PubMed  CAS  Google Scholar 

  11. Kemp CJ, Sun S, Gurley KE (2001) p53 induction and apoptosis in response to radio- and chemotherapy in vivo is tumor-type-dependent. Cancer Res 61:327–332

    PubMed  CAS  Google Scholar 

  12. Agarwal ML, Agarwal A, Taylor WR, Stark GR (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92:8493–8497

    Article  PubMed  CAS  Google Scholar 

  13. Flatt PM, Tang LJ, Scatena CD, Szak ST, Pietenpol JA (2000) p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol Cell Biol 20:4210–4223

    Article  PubMed  CAS  Google Scholar 

  14. Meulmeester E, Jochemsen AG (2008) p53: a guide to apoptosis. Curr Cancer Drug Targets 8:87–97

    Article  PubMed  CAS  Google Scholar 

  15. Schmitt CA, Rosenthal CT, Lowe SW (2000) Genetic analysis of chemoresistance in primary murine lymphomas. Nat Med 6:1029–1035

    Article  PubMed  CAS  Google Scholar 

  16. Gewirtz DA, Holt SE, Elmore LW (2008) Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 76:947–957

    Article  PubMed  CAS  Google Scholar 

  17. Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512

    Article  PubMed  CAS  Google Scholar 

  18. Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V, Cordon-Cardo C, Lowe SW (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  19. Brown JM, Wilson G (2003) Apoptosis genes and resistance to cancer therapy: what does the experimental and clinical data tell us? Cancer Biol Ther 2:477–490

    PubMed  CAS  Google Scholar 

  20. Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP, Sedivy JM, Kinzler KW, Vogelstein B (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501

    Article  PubMed  CAS  Google Scholar 

  21. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837

    Article  PubMed  CAS  Google Scholar 

  22. Mansilla S, Bataller M, Portugal J (2006) Mitotic catastrophe as a consequence of chemotherapy. Anticancer Agents Med Chem 6:589–602

    Article  PubMed  CAS  Google Scholar 

  23. Mansilla S, Priebe W, Portugal J (2006) Mitotic catastrophe results in cell death by caspase-dependent and caspase-independent mechanisms. Cell Cycle 5:53–60

    Article  PubMed  CAS  Google Scholar 

  24. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  PubMed  CAS  Google Scholar 

  25. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    PubMed  CAS  Google Scholar 

  26. DeWeese TL, Walsh JC, Dillehay LE, Kessis TD, Hedrick L, Cho KR, Nelson WG (1997) Human papillomavirus E6 and E7 oncoproteins alter cell cycle progression but not radiosensitivity of carcinoma cells treated with low-dose-rate radiation. Int J Radiat Oncol Biol Phys 37:145–154

    Article  PubMed  CAS  Google Scholar 

  27. Portugal J, Bataller M, Mansilla S (2009) Cell death pathways in response to antitumor therapy. Tumori 95:409–421

    PubMed  CAS  Google Scholar 

  28. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Invest 104:263–269

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Jerry Chipuk and Kostas Floros for guidance with Annexin V staining and detection protocols. The authors are supported by grants from the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Manfredi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Senturk, E., Manfredi, J.J. (2013). Determine the Effect of p53 on Chemosensitivity. In: Deb, S., Deb, S. (eds) p53 Protocols. Methods in Molecular Biology, vol 962. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-236-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-236-0_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-235-3

  • Online ISBN: 978-1-62703-236-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics