Skip to main content

The Dicot Root as a Model System for Studying Organogenesis

  • Protocol
  • First Online:
Plant Organogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 959))

Abstract

Organogenesis is the developmental process for producing new organs from undifferentiated cells. In plants, most organs are formed during postembryonic development. Shoot lateral organs are generated in the shoot apical meristem whereas lateral roots develop outside the root apical meristem. While lateral organ formation at the shoot and root might seem quite different, recent genetic studies have highlighted numerous parallels between these processes. In particular, the dynamic accumulation of auxin has been shown to play a crucial role both as a “morphogenetic trigger” and as a morphogen in both phenomena. This suggests that a unique model system could be adopted to study organogenesis in plants. In this chapter we describe the conceptual and technical advantages that support lateral root development as a good model system for studying organogenesis in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benková E, Michniewicz M, Sauer M et al (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    PubMed  Google Scholar 

  2. Péret B, De Rybel B, Casimiro I et al (2009) Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14:399–408

    PubMed  Google Scholar 

  3. Vernoux T, Besnard F, Traas J (2010) Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol 2:a001487

    PubMed  Google Scholar 

  4. Hawker NP, Bowman JL (2004) Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270

    PubMed  CAS  Google Scholar 

  5. De Smet I, Lau S, Voss U et al (2010) Bimodular auxin response controls organogenesis in Arabidopsis. Proc Natl Acad Sci USA 107:2705–2710

    PubMed  Google Scholar 

  6. Sarkar AK, Luijten M, Miyashima S et al (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814

    PubMed  CAS  Google Scholar 

  7. Dolan L, Janmaat K, Willemsen V et al (1993) Cellular organisation of the Arabidopsis thaliana root. Development 119:71

    PubMed  CAS  Google Scholar 

  8. De Smet I, Lau S, Mayer U et al (2010) Embryogenesis – the humble beginnings of plant life. Plant J 61:959–970

    PubMed  Google Scholar 

  9. Peris CIL, Rademacher EH, Weijers D (2010) Green beginnings – pattern formation in the early plant embryo. Curr Top Dev Biol 91:1–27

    PubMed  CAS  Google Scholar 

  10. Himanen K, Vuylsteke M, Vanneste S et al (2004) Transcript profiling of early lateral root initiation. Proc Natl Acad Sci USA 101:5146–5151

    PubMed  CAS  Google Scholar 

  11. Parizot B, Laplaze L, Ricaud L et al (2008) Diarch symmetry of the vascular bundle in Arabidopsis root encompasses the pericycle and is reflected in distich lateral root initiation. Plant Physiol 146:140–148

    PubMed  CAS  Google Scholar 

  12. Malamy JE, Benfey PN (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124:33

    PubMed  CAS  Google Scholar 

  13. Guyomarc’h S, Lucas M, Laplaze L (2010) Lateral/secondary roots. In: Encyclopedia of life sciences (ELS). John Wiley & Sons, Ltd, Chichester, UK.

    Google Scholar 

  14. De Smet I, Tetsumura T, De Rybel B et al (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690

    PubMed  Google Scholar 

  15. De Rybel B, Vassileva V, Parizot B et al (2010) A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20:1697–1706

    PubMed  Google Scholar 

  16. Swarup K, Benková E, Swarup R et al (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954

    PubMed  CAS  Google Scholar 

  17. Satina S, Blakeslee AF, Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27:895–905

    Google Scholar 

  18. Laufs P, Grandjean O, Jonak C et al (1998) Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10:1375–1390

    PubMed  CAS  Google Scholar 

  19. Mayer KF, Schoof H, Haecker A et al (1998) Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95:805–815

    PubMed  CAS  Google Scholar 

  20. Husbands AY, Chitwood DH, Plavskin Y et al (2009) Signals and prepatterns: new insights into organ polarity in plants. Genes Dev 23:1986–1997

    PubMed  CAS  Google Scholar 

  21. Meicenheimer RD (1981) Changes in Epilobium phyllotaxy induced by N-1-naphthylphthalamic acid and alpha-4-chlorophenoxyisobutyric acid. Am J Bot 68:1139–1154

    CAS  Google Scholar 

  22. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    PubMed  CAS  Google Scholar 

  23. Reinhardt D, Pesce E-R, Stieger P et al (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    PubMed  CAS  Google Scholar 

  24. Bohn-Courseau I (2010) Auxin: a major regulator of organogenesis. C R Biol 333:290–296

    PubMed  CAS  Google Scholar 

  25. Smith RS, Guyomarc’h S, Mandel T et al (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci USA 103:1301–1306

    PubMed  CAS  Google Scholar 

  26. Heisler MG, Ohno C, Das P et al (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    PubMed  CAS  Google Scholar 

  27. de Reuille PB, Bohn-Courseau I, Ljung K et al (2006) Computer simulations reveal properties of the cell–cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci USA 103:1627–1632

    PubMed  Google Scholar 

  28. Paciorek T, Zazimalova E, Ruthardt N et al (2005) Auxin inhibits endocytosis and promotes its own efflux from cells. Nature 435:1251–1256

    PubMed  CAS  Google Scholar 

  29. Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    PubMed  CAS  Google Scholar 

  30. Stoma S, Lucas M, Chopard J et al (2008) Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput Biol 4:e1000207

    PubMed  Google Scholar 

  31. Bilsborough GD, Runions A, Barkoulas M et al (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci USA 108:3424–3429

    PubMed  CAS  Google Scholar 

  32. Bayer EM, Smith RS, Mandel T et al (2009) Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev 23:373

    PubMed  CAS  Google Scholar 

  33. Wabnik K, Kleine-Vehn J, Balla J et al (2010) Emergence of tissue polarization from synergy of intracellular and extracellular auxin signaling. Mol Syst Biol 6:447

    PubMed  CAS  Google Scholar 

  34. Sauer M, Balla J, Luschnig C et al (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911

    PubMed  CAS  Google Scholar 

  35. Scarpella E, Marcos D, Friml J et al (2006) Control of leaf vascular patterning by polar auxin transport. Genes Dev 20:1015–1027

    PubMed  CAS  Google Scholar 

  36. Torrey JG (1986) Endogenous and exogenous influences on the regulation of lateral root formation. In: Jackson MB (ed) New root formation in plants and cuttings. Martinus Nijhoff, Hingham, MA

    Google Scholar 

  37. Casimiro I, Marchant A, Bhalerao RP et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13:843–852

    PubMed  CAS  Google Scholar 

  38. Ulmasov T, Murfett J, Hagen G et al (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    PubMed  CAS  Google Scholar 

  39. Sabatini S, Beis D, Wolkenfelt H et al (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    PubMed  CAS  Google Scholar 

  40. Dubrovsky JG, Sauer M, Napsucialy-Mendivil S et al (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci USA 105:8790–8794

    PubMed  CAS  Google Scholar 

  41. Lucas M, Guédon Y, Jay-Allemand C et al (2008) An auxin transport-based model of root branching in Arabidopsis thaliana. PLoS One 3:e3673

    PubMed  Google Scholar 

  42. Dubrovsky JG, Gambetta GA, Hernández-Barrera A et al (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot 97:903–915

    PubMed  CAS  Google Scholar 

  43. Moreno-Risueno MA, Van Norman JM, Moreno A et al (2010) Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329:1306–1311

    PubMed  CAS  Google Scholar 

  44. Benková E, Ivanchenko MG, Friml J et al (2009) A morphogenetic trigger: is there an emerging concept in plant developmental biology? Trends Plant Sci 14:189–193

    PubMed  Google Scholar 

  45. Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    PubMed  CAS  Google Scholar 

  46. Fukaki H, Tasaka M (2009) Hormone interactions during lateral root formation. Plant Mol Biol 69:437–449

    PubMed  CAS  Google Scholar 

  47. Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    PubMed  CAS  Google Scholar 

  48. Petersson SV, Johansson AI, Kowalczyk M et al (2009) An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    PubMed  CAS  Google Scholar 

  49. Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    PubMed  CAS  Google Scholar 

  50. Xu J, Hofhuis H, Heidstra R et al (2006) A molecular framework for plant regeneration. Science 311:385–388

    PubMed  CAS  Google Scholar 

  51. Ding Z, Friml J (2010) Auxin regulates distal stem cell differentiation in Arabidopsis roots. Proc Natl Acad Sci USA 107:12046–12051

    PubMed  CAS  Google Scholar 

  52. van den Berg C, Willemsen V, Hendriks G et al (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390:287–289

    PubMed  Google Scholar 

  53. Stahl Y, Wink RH, Ingram GC et al (2009) A signaling module controlling the stem cell niche in Arabidopsis root meristems. Curr Biol 19:909–914

    PubMed  CAS  Google Scholar 

  54. Aida M, Beis D, Heidstra R et al (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    PubMed  CAS  Google Scholar 

  55. Galinha C, Hofhuis H, Luijten M et al (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449:1053–1057

    PubMed  CAS  Google Scholar 

  56. Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    PubMed  CAS  Google Scholar 

  57. Dharmasiri N, Dharmasiri S, Weijers D et al (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    PubMed  CAS  Google Scholar 

  58. Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    PubMed  CAS  Google Scholar 

  59. Tiwari SB, Wang XJ, Hagen G et al (2001) AUX/IAA proteins are active repressors, and their stability and activity are modulated by auxin. Plant Cell 13:2809–2822

    PubMed  CAS  Google Scholar 

  60. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci USA 96:5844–5849

    PubMed  CAS  Google Scholar 

  61. Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319

    PubMed  CAS  Google Scholar 

  62. Guilfoyle T, Hagen G, Ulmasov T et al (1998) How does auxin turn on genes? Plant Physiol 118:341–347

    PubMed  CAS  Google Scholar 

  63. Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    PubMed  CAS  Google Scholar 

  64. Gray WM, Kepinski S, Rouse D et al (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    PubMed  CAS  Google Scholar 

  65. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15:533–543

    PubMed  CAS  Google Scholar 

  66. Berleth T, Jurgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118:575

    Google Scholar 

  67. Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411

    PubMed  CAS  Google Scholar 

  68. Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

    PubMed  CAS  Google Scholar 

  69. Hamann T, Benkova E, Baurle I et al (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615

    PubMed  CAS  Google Scholar 

  70. Mayer U, Ruiz RAT, Berleth T et al (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353:402–407

    Google Scholar 

  71. Wilmoth JC, Wang S, Tiwari SB et al (2005) NPH4/ARF7 and ARF19 promote leaf expansion and auxin-induced lateral root formation. Plant J 43:118–130

    PubMed  CAS  Google Scholar 

  72. Fukaki H, Tameda S, Masuda H et al (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168

    PubMed  CAS  Google Scholar 

  73. Okushima Y, Overvoorde PJ, Arima K et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463

    PubMed  CAS  Google Scholar 

  74. Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480

    PubMed  CAS  Google Scholar 

  75. Gutierrez L, Bussell JD, Pacurar DI et al (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    PubMed  CAS  Google Scholar 

  76. Marin E, Jouannet V, Herz A et al (2010) miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22:1104–1117

    PubMed  CAS  Google Scholar 

  77. Fahlgren N, Montgomery TA, Howell MD et al (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944

    PubMed  CAS  Google Scholar 

  78. Garcia D, Collier SA, Byrne ME et al (2006) Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr Biol 16:933–938

    PubMed  CAS  Google Scholar 

  79. Sugimoto K, Jiao Y, Meyerowitz EM (2010) Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18:463–471

    PubMed  CAS  Google Scholar 

  80. Himanen K, Boucheron E, Vanneste S et al (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14:2339–2351

    PubMed  CAS  Google Scholar 

  81. Vanneste S, De Rybel B, Beemster GTS et al (2005) Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. Plant Cell 17:3035–3050

    PubMed  CAS  Google Scholar 

  82. De Smet I, Vassileva V, De Rybel B et al (2008) Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322:594–597

    PubMed  Google Scholar 

  83. Lucas M, Godin C, Jay-Allemand C et al (2008) Auxin fluxes in the root apex co-regulate gravitropism and lateral root initiation. J Exp Bot 59:55–66

    PubMed  CAS  Google Scholar 

  84. Ditengou FA, Teale WD, Kochersperger P et al (2008) Mechanical induction of lateral root initiation in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:18818–18823

    PubMed  CAS  Google Scholar 

  85. Richter GL, Monshausen GB, Krol A et al (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866

    PubMed  CAS  Google Scholar 

  86. French A, Ubeda-Tomás S, Holman TJ et al (2009) High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiol 150:1784–1795

    PubMed  CAS  Google Scholar 

  87. Naeem A, French AP, Wells DM et al (2011) High-throughput feature counting and measurement of roots. Bioinformatics 27:1337–1338

    PubMed  CAS  Google Scholar 

  88. Armengaud P, Zambaux K, Hills A et al (2009) EZ‐Rhizo: integrated software for the fast and accurate measurement of root system architecture. Plant J 57:945–956

    PubMed  CAS  Google Scholar 

  89. Lucas M, Swarup R, Paponov IA et al (2011) Short-root regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol 155:384–398

    PubMed  CAS  Google Scholar 

  90. Hirota A, Kato T, Fukaki H et al (2007) The auxin-regulated AP2/EREBP gene PUCHI is required for morphogenesis in the early lateral root primordium of Arabidopsis. Plant Cell 19:2156–2168

    PubMed  CAS  Google Scholar 

  91. Vernoux T, Brunoud G, Farcot E et al (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Molecular System Biology 7:508

    Google Scholar 

  92. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    PubMed  CAS  Google Scholar 

  93. Geldner N, Denervaud‐Tendon V, Hyman DL et al (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    Google Scholar 

  94. De Smet I, Chaerle P, Vanneste S et al (2004) An easy and versatile embedding method for transverse sections. J Microsc 213:76–80

    PubMed  Google Scholar 

  95. Sauer M, Paciorek T, Benkova E et al (2006) Immunocytochemical techniques for whole-mount in situ protein localization in plants. Nat Protoc 1:98–103

    PubMed  CAS  Google Scholar 

  96. Okushima Y, Fukaki H, Onoda M et al (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    PubMed  CAS  Google Scholar 

  97. Parizot B, De Rybel B, Beeckman T (2010) VisuaLRTC: a new view on lateral root initiation by combining specific transcriptome data sets. Plant Physiol 153:34–40

    PubMed  CAS  Google Scholar 

  98. Menges M, Hennig L, Gruissem W et al (2003) Genome-wide gene expression in an Arabidopsis cell suspension. Plant Mol Biol 53:423–442

    PubMed  CAS  Google Scholar 

  99. Brady SM, Orlando DA, Lee J-Y et al (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318:801–806

    PubMed  CAS  Google Scholar 

  100. Laplaze L, Parizot B, Baker A et al (2005) GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana. J Exp Bot 56:2433–2442

    PubMed  CAS  Google Scholar 

  101. Fukaki H, Nakao Y, Okushima Y et al (2005) Tissue-specific expression of stabilized SOLITARY-ROOT/IAA14 alters lateral root development in Arabidopsis. Plant J 44:382–395

    PubMed  CAS  Google Scholar 

  102. Laskowski M, Grieneisen VA, Hofhuis H et al (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:e307

    PubMed  Google Scholar 

  103. Szymanowska-Pułka J, Nakielski J (2010) The tensor-based model for growth and cell divisions of the root apex. II. Lateral root formation. Planta 232:1207–1218

    PubMed  Google Scholar 

  104. Lucas M, Laplaze L, Bennett MJ (2011) Plant systems biology: network matters. Plant Cell Environ 34:535–553

    PubMed  Google Scholar 

  105. Hardtke CS, Ckurshumova W, Vidaurre DP et al (2004) Overlapping and non-redundant functions of the Arabidopsis auxin response factors MONOPTEROS and NONPHOTOTROPIC HYPOCOTYL 4. Development 131:1089–1100

    PubMed  CAS  Google Scholar 

  106. Weijers D, Benkova E, Jäger KE et al (2005) Developmental specificity of auxin response by pairs of ARF and Aux/IAA transcriptional regulators. EMBO J 24:1874–1885

    PubMed  CAS  Google Scholar 

  107. Kornet N, Scheres B (2009) Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell 21:1070–1079

    PubMed  CAS  Google Scholar 

  108. Aichinger E, Villar CBR, Di Mambro R et al (2011) The CHD3 chromatin remodeler PICKLE and polycomb group proteins antagonistically regulate meristem activity in the Arabidopsis root. Plant Cell 23:1047–1060

    PubMed  CAS  Google Scholar 

  109. Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386

    PubMed  CAS  Google Scholar 

  110. Long JA, Ohno C, Smith ZR, Meyerowitz EM (2006) TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312:1520–1523

    PubMed  CAS  Google Scholar 

  111. Fukaki H, Taniguchi N, Tasaka M (2006) PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation. Plant J 48:380–389

    PubMed  CAS  Google Scholar 

  112. Blilou I, Xu J, Wildwater M, Willemsen V et al (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    PubMed  CAS  Google Scholar 

  113. Jönsson H, Heisler MG, Shapiro BE et al (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci USA 103:1633–1638

    PubMed  Google Scholar 

  114. Wu M-F, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    PubMed  CAS  Google Scholar 

  115. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    PubMed  CAS  Google Scholar 

  116. Pekker I, Alvarez JP, Eshed Y (2005) Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell 17:2899–2910

    PubMed  CAS  Google Scholar 

  117. Okushima Y, Mitina I, Quach HL et al (2005) AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43:29–46

    PubMed  CAS  Google Scholar 

  118. Guo M, Thomas J, Collins G et al (2008) Direct repression of KNOX loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20:48–58

    PubMed  CAS  Google Scholar 

  119. Xie Q, Frugis G, Colgan D et al (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    PubMed  CAS  Google Scholar 

  120. Lee HW, Kim NY, Lee DJ et al (2009) LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151:1377–1389

    PubMed  CAS  Google Scholar 

  121. Lin WC, Shuai B, Springer PS (2003) The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial-abaxial patterning. Plant Cell 15:2241–2252

    PubMed  CAS  Google Scholar 

  122. Aida M, Vernoux T, Furutani M et al (2002) Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129:3965–3974

    PubMed  CAS  Google Scholar 

  123. Hibara K, Karim MR, Takada S et al (2006) Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation. Plant Cell 18:2946–2957

    PubMed  CAS  Google Scholar 

  124. Kerstetter RA, Bollman K, Taylor RA et al (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    PubMed  CAS  Google Scholar 

  125. McConnell JR, Emery J, Eshed Y et al (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    PubMed  CAS  Google Scholar 

  126. Karim MR, Hirota A, Kwiatkowska D et al (2009) A role for Arabidopsis PUCHI in floral meristem identity and bract suppression. Plant Cell 21:1360–1372

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in our laboratory is supported by the IRD, the Université Montpellier 2 (grant from the Conseil Scientifique to SG and LL), the Région Languedoc-Roussillon (grant “Chercheur d’Avenir” to LL and SG), and the Agropolis Fondation (Rhizopolis federative grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soazig Guyomarc’h .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lavenus, J., Lucas, M., Laplaze, L., Guyomarc’h, S. (2013). The Dicot Root as a Model System for Studying Organogenesis. In: De Smet, I. (eds) Plant Organogenesis. Methods in Molecular Biology, vol 959. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-221-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-221-6_3

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-220-9

  • Online ISBN: 978-1-62703-221-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics