Skip to main content

Development of Insect-Resistant Transgenic Cotton with Chimeric TVip3A Accumulating in Chloroplasts

  • Protocol
  • First Online:
Transgenic Cotton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 958))

Abstract

An optimized vip3A gene, designated as vip3A* was chemically synthesized and a thi1 gene chloroplast transit peptide coding sequence was attached to its 5′ end to produce the tvip3A*. vip3A* and tvip3A* genes were transformed into Gossypium hirsutum cv. Zhongmiansuo35 mediated by Agrobacterium tumefaciens. Four independent transgenic T1 lines with single-copy insertions and unchanged phenotypes (CTV1 and CTV2 for tvip3A*, and CV1 and CV2 for vip3A*) were selected by Polymerase chain reaction (PCR), Reverse transcription (RT)-PCR, Southern blotting, enzyme-linked immunosorbent assay (ELISA), and insect bioassay. As expected, the Vip3A* protein of CTV1 and CTV2 were transported to the chloroplasts, where they accumulated. Our results suggest that the two tvip3A* transgenic lines (CTV1 and CTV2) can be used to develop insect-resistant cultivars and could be used as a resource for raising multi-toxins-expressing transgenic cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EPA US (1995) Use of the benchmark dose approach in health risk assessment. Office of Research and Development, Washington, DC, EPA/630/R-94/007

    Google Scholar 

  2. James C (2009) Global status of commercialized biotech/GM crops. http://www.isaaa.org

  3. Cao J, Zhao JZ, Tang D, Shelton M, Earle D (2002) Broccoli plants with pyramided cry1Ac and cry1C Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor Appl Genet 105(2-3):258–264

    Article  PubMed  CAS  Google Scholar 

  4. Ferre J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533

    Article  PubMed  CAS  Google Scholar 

  5. Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  6. Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Shelton AM, Zhao JZ (2003) Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J Econ Entomol 96(4):1031–1038

    Article  PubMed  CAS  Google Scholar 

  7. Zhao JZ, Li YX, Collins HL, Shelton AM (2002) Examination of the F2 screen for rare resistance alleles to Bacillus thuringiensis toxins in the diamondback moth (Lepidoptera: Plutellidae). J Econ Entomol 95(1):14–21

    Article  PubMed  Google Scholar 

  8. Micinski S, Waltman B (2005) Efficacy of VipCOT for control of the bollworm/tobacco budworm complex in Northwest Louisiana. In: Proceedings of 2005 Beltwide cotton conferences New Orleans, LA National Cotton Council Memphis, TN, January 2005. pp 1239–1242

    Google Scholar 

  9. Estruch JJ, Warren GW, Mullins MA, Nye GJ, Craig JA, Koziel MG (1996) Vip3A, a novel Bacillus thuringiensis vegetative insecticidal protein with a wide spectrum of activities against lepidopteran insects. Proc Natl Acad Sci USA 93(11):5389–5394

    Article  PubMed  CAS  Google Scholar 

  10. Doss VA, Kumar KA, Jayakumar R, Sekar V (2002) Cloning and expression of the vegetative insecticidal protein (vip3V) gene of Bacillus thuringiensis in Escherichia coli. Protein Expr Purif 26(1):82–88

    Article  PubMed  CAS  Google Scholar 

  11. Mesrati LA, Tounsi S, Jaoua S (2005) Characterization of a novel vip3-type gene from Bacillus thuringiensis and evidence of its presence on a large plasmid. FEMS Microbiol Lett 244(2):353–358

    Article  PubMed  CAS  Google Scholar 

  12. Selvapandiyan A, Arora N, Rajagopal R, Jalali SK, Venkatesan T, Singh SP, Bhatnagar RK (2001) Toxicity analysis of N- and C-terminus-deleted vegetative insecticidal protein from Bacillus thuringiensis. Appl Environ Microbiol 67(12):5855–5858

    Article  PubMed  CAS  Google Scholar 

  13. Chabregas SM, Luche DD, Farias LP, Ribeiro AF, van Sluys MA, Menck CF, Silva-Filho MC (2001) Dual targeting properties of the N-terminal signal sequence of Arabidopsis thaliana THI1 protein to mitochondria and chloroplasts. Plant Mol Biol 46(6):639–650

    Article  PubMed  CAS  Google Scholar 

  14. Lee MK, Walters FS, Hart H, Palekar N, Chen JS (2003) The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab delta-endotoxin. Appl Environ Microbiol 69(8):4648–4657

    Article  PubMed  CAS  Google Scholar 

  15. McCaffery A, Capiro M, Jackson R, Marcus M, Martin T, Dickerson D, Negrotto D, O’Reilly D, Chen E, Lee M (2006) Proceedings of effective IRM with a novel insecticidal protein, Vip3A. Beltwide cotton conferences, San Antonio, TX. National Cotton Council Memphis, TN, 3–6 Jan 2006. pp 1229–1235

    Google Scholar 

  16. MacIntosh SC, McPherson SL, Perlak FJ, Marrone PG, Fuchs RL (1990) Purification and characterization of Bacillus thuringiensis var. tenebrionis insecticidal proteins produced in E. coli. Biochem Biophys Res Commun 170(2):665–672

    Article  PubMed  CAS  Google Scholar 

  17. Chabregas SM, Luche DD, Van Sluys MA, Menck CF, Silva-Filho MC (2003) Differential usage of two in-frame translational start codons regulates subcellular localization of Arabidopsis thaliana THI1. J Cell Sci 116(Pt 2):285–291

    Article  PubMed  CAS  Google Scholar 

  18. Chen JW, Tang LX, Tang MJ, Shi YX, Pang Y (2002) Cloning and expression product of vip3A gene from Bacillus thuringiensis and analysis of inseceicidal activity. Sheng Wu Gong Cheng Xue Bao 18(6):687–692

    PubMed  CAS  Google Scholar 

  19. Yu CG, Mullins MA, Warren GW, Koziel MG, Estruch JJ (1997) The Bacillus thuringiensis vegetative insecticidal protein Vip3A lyses midgut epithelium cells of susceptible insects. Appl Environ Microbiol 63(2):532–536

    PubMed  CAS  Google Scholar 

  20. Li TY, Tian YC, Qing XF, Mang KQ, Li WG, He YG, Shen L (1994) Transgenic tobacco plants with efficent insect resistance. Science in China, Ser B 37:1479–1488

    Google Scholar 

  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  22. Gamborg OL (1970) The effects of amino acids and ammonium on growth of plant cells in suspension culture. Plant Physiol 45:372–375

    Article  PubMed  CAS  Google Scholar 

  23. Wu J, Luo X, Zhang X, Shi Y, Tian Y (2011) Development of insect-resistant transgenic ­cotton with chimeric TVip3A* accumulating in chloroplasts. Transgenic Res 20:963–973

    Article  PubMed  Google Scholar 

  24. Wu J, Zhang X, Luo X, Xiao J (2003) Selection of somatic embryogenesis pure lines of two upland cotton (Gossypium hirsutum L) cultivars. Cotton Sci 15:254–256

    Google Scholar 

  25. Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11(2):122–127

    Article  CAS  Google Scholar 

  26. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  27. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  28. Guo HN, Wu JH, Chen XY, Luo XL, Lu R, Shi YJ, Qin HM, Xiao JL, Tian YC (2003) Cotton plants transformed with the activated chimeric cry1Ac and AP1-B genes. Acta Botanica Sin 45:108–113

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahe Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wu, J., Tian, Y. (2013). Development of Insect-Resistant Transgenic Cotton with Chimeric TVip3A Accumulating in Chloroplasts. In: Zhang, B. (eds) Transgenic Cotton. Methods in Molecular Biology, vol 958. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-212-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-212-4_20

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-211-7

  • Online ISBN: 978-1-62703-212-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics