Skip to main content

Monitoring Extracellular Monoamines with In Vivo Microdialysis in Awake Rats: A Practical Approach

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Part of the book series: Neuromethods ((NM,volume 75))

Abstract

The microdialysis technique for the measurement of brain extracellular levels of monoamines has become very popular over the last 2–3 decades, particularly in laboratories involved in neuropharmacology studies. Nevertheless, microdialysis of monoamines is a challenging technique for several reasons and to get reliable results it is necessary to develop sufficient skill and be ready to solve technical and analytical problems that may occur. This chapter is intended to help obtain reliable and reproducible results by describing in detail practical aspects of probe construction and implantation into the rat brain and measurement of noradrenaline, dopamine, and serotonin with HPLC coupled to electrochemical detection, set up, optimized, and validated in this author’s laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dahlstroem A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62(p. SUPPL 232):1–55

    Google Scholar 

  2. Sarna GS, Hutson PH, Tricklebank MD, Curzon G (1983) Determination of brain 5-hydroxytryptamine turnover in freely moving rats using repeated sampling of cerebrovascular fluid. J Neurochem 40(2):383–388

    Article  PubMed  CAS  Google Scholar 

  3. Gaddum JH (1961) Push-pull cannulae. J Physiol 155:1–2P

    Google Scholar 

  4. Glowinski J (1981) In vivo release of transmitters in the cat basal ganglia. Fed Proc 40(2):135–141

    PubMed  CAS  Google Scholar 

  5. Philippu A (1984) Use of push-pull cannulae to determine the release of endogenous neurotransmitters in distinct brain areas of anaesthetized and freely moving animals. In: Marsden CA (ed) Measurement of neurotransmitters release in vivo. Wiley, Chichester, UK, pp 3–37

    Google Scholar 

  6. Besson M, Cheramy A, Feltz P, Glowinski J (1971) Dopamine: spontaneous and drug-induced release from the caudate nucleus in the cat. Brain Res 32(2):407–424

    Article  PubMed  CAS  Google Scholar 

  7. Gonon F, Buda M, Cespuglio R, Jouvet M, Pujol JF (1980) In vivo electrochemical detection of catechols in the neostriatum of anaesthetized rats: dopamine or DOPAC? Nature 286(5776):902–904

    Article  PubMed  CAS  Google Scholar 

  8. Stamford JA (1985) In vivo voltammetry: promise and perspective. Brain Res 357(2):119–135

    PubMed  CAS  Google Scholar 

  9. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30(1–3):44–55

    PubMed  CAS  Google Scholar 

  10. Kissinger PT, Refshuage CJ, Dreiling R, Blank L, Freeman R, Adams RN (1973) An electrochemical detector for liquid chromatography with picograms sensitivity. Analytical Letters 6:465–477

    Article  CAS  Google Scholar 

  11. Mefford IN (1981) Application of high performance liquid chromatography with electrochemical detection to neurochemical analysis: measurement of catecholamines, serotonin and metabolites in rat brain. J Neurosci Methods 3(3):207–224

    Article  PubMed  CAS  Google Scholar 

  12. Imperato A, Di Chiara G (1984) Trans-striatal dialysis coupled to reverse phase high performance liquid chromatography with electrochemical detection: a new method for the study of the in vivo release of endogenous dopamine and metabolites. J Neurosci 4(4):966–977

    PubMed  CAS  Google Scholar 

  13. Ungerstedt U, Herrera-Marschitz M, Zetterstrom T (1982) Dopamine neurotransmission and brain function. Prog Brain Res 55:41–49

    Article  PubMed  CAS  Google Scholar 

  14. Zetterstrom T, Sharp T, Marsden CA, Ungerstedt U (1983) In vivo measurement of dopamine and its metabolites by intracerebral dialysis: changes after d-amphetamine. J Neurochem 41(6):1769–1773

    Article  PubMed  CAS  Google Scholar 

  15. L’Heureux R, Dennis T, Curet O, Scatton B (1986) Measurement of endogenous noradrenaline release in the rat cerebral cortex in vivo by transcortical dialysis: effects of drugs affecting noradrenergic transmission. J Neurochem 46(6):1794–1801

    Article  PubMed  Google Scholar 

  16. Carboni E, Di Chiara G (1989) Serotonin release estimated by transcortical dialysis in freely-moving rats. Neuroscience 32(3):637–645

    Article  PubMed  CAS  Google Scholar 

  17. Hernandez L, Lee F, Hoebel BG (1987) Simultaneous microdialysis and amphetamine infusion in the nucleus accumbens and striatum of freely moving rats: increase in extracellular dopamine and serotonin. Brain Res Bull 19(6):623–628

    Article  PubMed  CAS  Google Scholar 

  18. Kalen P, Strecker RE, Rosengren E, Bjorklund A (1988) Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection. J Neurochem 51(5):1422–1435

    Article  PubMed  CAS  Google Scholar 

  19. Calcagno E, Carli M, Baviera M, Invernizzi RW (2009) Endogenous serotonin and serotonin2C receptors are involved in the ability of M100907 to suppress cortical glutamate release induced by NMDA receptor blockade. J Neurochem 108(2):521–532

    Article  PubMed  CAS  Google Scholar 

  20. Calcagno E, Carli M, Invernizzi RW (2006) The 5-HT(1A) receptor agonist 8-OH-DPAT prevents prefrontocortical glutamate and serotonin release in response to blockade of cortical NMDA receptors. J Neurochem 96(3):853–860

    Article  PubMed  CAS  Google Scholar 

  21. Calcagno E, Guzzetti S, Canetta A, Fracasso C, Caccia S, Cervo L, Invernizzi RW (2009) Enhancement of cortical extracellular 5-HT by 5-HT1A and 5-HT2C receptor blockade restores the antidepressant-like effect of citalopram in non-responder mice. Int J Neuropsychopharmacol 12:793–803

    Article  PubMed  CAS  Google Scholar 

  22. Calcagno E, Invernizzi RW (2010) Strain-dependent serotonin neuron feedback control: role of serotonin 2 C receptors. J Neurochem 114(6):1701–1710

    Article  PubMed  CAS  Google Scholar 

  23. Ceglia I, Acconcia S, Fracasso C, Colovic M, Caccia S, Invernizzi RW (2004) Effects of chronic treatment with escitalopram or citalopram on extracellular 5-HT in the prefrontal cortex of rats: role of 5-HT1A receptors. Br J Pharmacol 142(3):469–478

    Article  PubMed  CAS  Google Scholar 

  24. Ceglia I, Carli M, Baviera M, Renoldi G, Calcagno E, Invernizzi RW (2004) The 5-HT receptor antagonist M100,907 prevents extracellular glutamate rising in response to NMDA receptor blockade in the mPFC. J Neurochem 91(1):189–199

    Article  PubMed  CAS  Google Scholar 

  25. Invernizzi R, Belli S, Samanin R (1992) Citalopram’s ability to increase the extracellular concentrations of serotonin in the dorsal raphe prevents the drug’s effect in the frontal cortex. Brain Res 584(1–2):322–324

    Article  PubMed  CAS  Google Scholar 

  26. Invernizzi R, Bramante M, Samanin R (1994) Chronic treatment with citalopram facilitates the effect of a challenge dose on cortical serotonin output: role of presynaptic 5-HT1A receptors. Eur J Pharmacol 260(2–3):243–246

    Article  PubMed  CAS  Google Scholar 

  27. Invernizzi R, Bramante M, Samanin R (1995) Extracellular concentrations of serotonin in the dorsal hippocampus after acute and chronic treatment with citalopram. Brain Res 696(1–2):62–66

    Article  PubMed  CAS  Google Scholar 

  28. Invernizzi R, Bramante M, Samanin R (1996) Role of 5-HT1A receptors in the effects of acute chronic fluoxetine on extracellular serotonin in the frontal cortex. Pharmacol Biochem Behav 54(1):143–147

    Article  PubMed  CAS  Google Scholar 

  29. Invernizzi R, Morali F, Pozzi L, Samanin R (1990) Effects of acute and chronic clozapine on dopamine release and metabolism in the striatum and nucleus accumbens of conscious rats. Br J Pharmacol 100(4):774–778

    Article  PubMed  CAS  Google Scholar 

  30. Invernizzi R, Pozzi L, Samanin R (1995) Selective reduction of extracellular dopamine in the rat nucleus accumbens following chronic treatment with DAU 6215, a 5-HT3 receptor antagonist. Neuropharmacology 34(2):211–215

    Article  PubMed  CAS  Google Scholar 

  31. Invernizzi R, Velasco C, Bramante M, Longo A, Samanin R (1997) Effect of 5-HT1A receptor antagonists on citalopram-induced increase in extracellular serotonin in the frontal cortex, striatum and dorsal hippocampus. Neuropharmacology 36(4–5):467–473

    Article  PubMed  CAS  Google Scholar 

  32. Invernizzi RW, Garattini S (2004) Role of presynaptic alpha2-adrenoceptors in antidepressant action: recent findings from microdialysis studies. Prog Neuropsychopharmacol Biol Psychiatry 28(5):819–827

    Article  PubMed  CAS  Google Scholar 

  33. Invernizzi RW, Garavaglia C, Samanin R (2003) The alpha 2-adrenoceptor antagonist idazoxan reverses catalepsy induced by haloperidol in rats independent of striatal dopamine release: role of serotonergic mechanisms. Neuropsychopharmacology 28(5):872–879

    PubMed  CAS  Google Scholar 

  34. Invernizzi RW, Parini S, Sacchetti G, Fracasso C, Caccia S, Annoni K, Samanin R (2001) Chronic treatment with reboxetine by osmotic pumps facilitates its effect on extracellular noradrenaline and may desensitize alpha(2)- adrenoceptors in the prefrontal cortex. Br J Pharmacol 132(1):183–188

    Article  PubMed  CAS  Google Scholar 

  35. Invernizzi RW, Pierucci M, Calcagno E, Di Giovanni G, Di Matteo V, Benigno A, Esposito E (2007) Selective activation of 5-HT(2 C) receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: a combined in vivo electrophysiological and neurochemical study. Neuroscience 144(4):1523–1535

    Article  PubMed  CAS  Google Scholar 

  36. Invernizzi RW, Sacchetti G, Parini S, Acconcia S, Samanin R (2003) Flibanserin, a potential antidepressant drug, lowers 5-HT and raises dopamine and noradrenaline in the rat prefrontal cortex dialysate: role of 5-HT(1A) receptors. Br J Pharmacol 139(7):1281–1288

    Article  PubMed  CAS  Google Scholar 

  37. Parini S, Renoldi G, Battaglia A, Invernizzi RW (2005) Chronic reboxetine desensitizes terminal but not somatodendritic alpha2-adrenoceptors controlling noradrenaline release in the rat dorsal hippocampus. Neuropsychopharmacology 30(6):1048–1055

    Article  PubMed  CAS  Google Scholar 

  38. Pozzi L, Acconcia S, Ceglia I, Invernizzi RW, Samanin R (2002) Stimulation of 5-hydroxytryptamine (5-HT(2 C) ) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem 82(1):93–100

    Article  PubMed  CAS  Google Scholar 

  39. Pozzi L, Invernizzi R, Cervo L, Vallebuona F, Samanin R (1994) Evidence that extracellular concentrations of dopamine are regulated by noradrenergic neurons in the frontal cortex of rats. J Neurochem 63(1):195–200

    Article  PubMed  CAS  Google Scholar 

  40. Pozzi L, Invernizzi R, Garavaglia C, Samanin R (1999) Fluoxetine increases extracellular dopamine in the prefrontal cortex by a mechanism not dependent on serotonin: a comparison with citalopram. J Neurochem 73(3):1051–1057

    Article  PubMed  CAS  Google Scholar 

  41. Renoldi G, Calcagno E, Borsini F, Invernizzi RW (2007) Stimulation of group I mGlu receptors in the ventrotegmental area enhances extracellular dopamine in the rat medial prefrontal cortex. J Neurochem 100(6):1658–1666

    PubMed  CAS  Google Scholar 

  42. Renoldi G, Invernizzi RW (2006) Blockade of tachykinin NK1 receptors attenuates stress-induced rise of extracellular noradrenaline and dopamine in the rat and gerbil medial prefrontal cortex. J Neurosci Res 84(5):961–968

    Article  PubMed  CAS  Google Scholar 

  43. Sacchetti G, Bernini M, Bianchetti A, Parini S, Invernizzi RW, Samanin R (1999) Studies on the acute and chronic effects of reboxetine on extracellular noradrenaline and other monoamines in the rat brain. Br J Pharmacol 128(6):1332–1338

    Article  PubMed  CAS  Google Scholar 

  44. Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. Curr Protoc Neurosci Chapter 7: p. Unit 7 1

    Google Scholar 

  45. Zapata A, Chefer VI, Shippenberg TS (2009) Microdialysis in rodents. Curr Protoc Neurosci Chapter 7: p. Unit 7 2

    Google Scholar 

  46. Zapata A, Chefer VI, Shippenberg TS, Denoroy L (2009) Detection and quantification of neurotransmitters in dialysates. Curr Protoc Neurosci Chapter 7: p. Unit 7 4 1–30

    Google Scholar 

  47. Di Chiara G (1991) Brain dialysis of monoamines. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neurosciences. Elsevier, Amsterdam, pp 175–185

    Google Scholar 

  48. Sharp T, Zetterstrom T (1991) In vivo measurement of monoamine neurotransmitter release using brain microdialysis. In: Stamford JA (ed) Monitoring neuronal activity: a practical approach. IRL, Oxford, pp 147–179

    Google Scholar 

  49. Santiago M, Westerink BH (1990) Characterization of the in vivo release of dopamine as recorded by different types of intracerebral microdialysis probes. Naunyn Schmiedebergs Arch Pharmacol 342(4):407–414

    Article  PubMed  CAS  Google Scholar 

  50. Benveniste H, Huttemeier PC (1990) Microdialysis–theory and application. Prog Neurobiol 35(3):195–215

    Article  PubMed  CAS  Google Scholar 

  51. Moghaddam B, Bunney BS (1989) Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J Neurochem 53(2):652–654

    Article  PubMed  CAS  Google Scholar 

  52. Silver IA, Erecinska M (1990) Intracellular and extracellular changes of (Ca2+) in hypoxia and ischemia in rat brain in vivo. J Gen Physiol 95(5):837–866

    Article  PubMed  CAS  Google Scholar 

  53. Nicholson C (1980) Modulation of extracellular calcium and its functional implications. Fed Proc 39(5):1519–1523

    PubMed  CAS  Google Scholar 

  54. Invernizzi R, Pozzi L, Vallebuona F, Bonini I, Sacchetti G, Samanin R (1992) Effect of amineptine on regional extracellular concentrations of dopamine and noradrenaline in the rat brain. J Pharmacol Exp Ther 262(2):769–774

    PubMed  CAS  Google Scholar 

  55. Lehmann J, Valentino R, Robine V (1992) Cortical norepinephrine release elicited in situ by N-methyl-D-aspartate (NMDA) receptor stimulation: a microdialysis study. Brain Res 599(1):171–174

    Article  PubMed  CAS  Google Scholar 

  56. Sharp T, Bramwell SR, Grahame-Smith DG (1989) 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis. Br J Pharmacol 96(2):283–290

    Article  PubMed  CAS  Google Scholar 

  57. Gundlah C, Martin KF, Heal DJ, Auerbach SB (1997) In vivo criteria to differentiate monoamine reuptake inhibitors from releasing agents: sibutramine is a reuptake inhibitor. J Pharmacol Exp Ther 283(2):581–591

    PubMed  CAS  Google Scholar 

  58. Nakahara D, Ozaki N, Kapoor V, Nagatsu T (1989) The effect of uptake inhibition on dopamine release from the nucleus accumbens of rats during self- or forced stimulation of the medial forebrain bundle: a microdialysis study. Neurosci Lett 104(1–2):136–140

    Article  PubMed  CAS  Google Scholar 

  59. Romero L, Artigas F (1997) Preferential potentiation of the effects of serotonin uptake inhibitors by 5-HT1A receptor antagonists in the dorsal raphe pathway: role of somatodendritic autoreceptors. J Neurochem 68(6):2593–2603

    Article  PubMed  CAS  Google Scholar 

  60. Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Elsevier Academic Press, Sidney

    Google Scholar 

  61. Franklin KBJ, Paxinos G (1997) The mouse brain in stereotaxic coordinates. Academic Press, San Diego

    Google Scholar 

  62. Auerbach SB, Minzenberg MJ, Wilkinson LO (1989) Extracellular serotonin and 5-hydroxyindoleacetic acid in hypothalamus of the unanesthetized rat measured by in vivo dialysis coupled to high-performance liquid chromatography with electrochemical detection: dialysate serotonin reflects neuronal release. Brain Res 499(2):281–290

    Article  PubMed  CAS  Google Scholar 

  63. Sharp T, Bramwell SR, Clark D, Grahame-Smith DG (1989) In vivo measurement of extracellular 5-hydroxytryptamine in hippocampus of the anaesthetized rat using microdialysis: changes in relation to 5-hydroxytryptaminergic neuronal activity. J Neurochem 53(1):234–240

    Article  PubMed  CAS  Google Scholar 

  64. Deacon RM, Rawlins JN (1996) Equithesin without chloral hydrate as an anaesthetic for rats. Psychopharmacology (Berl) 124(3):288–290

    Article  CAS  Google Scholar 

  65. Waynforth HB, Flecknell PA (1992) Experimental and surgical techniques in the rat, 2nd edn. Academic, London

    Google Scholar 

  66. Tao R, Hjorth S (1992) Differences in the in vitro and in vivo 5-hydroxytryptamine extraction performance among three common microdialysis membranes. J Neurochem 59(5):1778–1785

    Article  PubMed  CAS  Google Scholar 

  67. Dolan JW (2010) Where did that peak come from? LC-GC, 23(7):358–361

    Google Scholar 

  68. Cosford RJ, Vinson AP, Kukoyi S, Justice JB Jr (1996) Quantitative microdialysis of serotonin and norepinephrine: pharmacological influences on in vivo extraction fraction. J Neurosci Methods 68(1):39–47

    Article  PubMed  CAS  Google Scholar 

  69. Parsons LH, Justice JB Jr (1994) Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 8(3):189–220

    PubMed  CAS  Google Scholar 

  70. Shippenberg TS, He M, Chefer V (1999) The use of microdialysis in the mouse: conventional versus quantitative techniques. Psychopharmacology (Berl) 147(1):33–34

    Article  CAS  Google Scholar 

  71. Invernizzi R, Garavaglia C, Samanin R (2000) JL13, a pyridobenzoxazepine compound with potential atypical antipsychotic activity, increases extracellular dopamine in the prefrontal cortex, but not in the striatum and the nucleus accumbens of rats. Naunyn Schmiedebergs Arch Pharmacol 361(3):298–302

    Article  PubMed  CAS  Google Scholar 

  72. Calcagno E, Canetta A, Guzzetti S, Cervo L, Invernizzi RW (2007) Strain differences in basal and post-citalopram extracellular 5-HT in the mouse medial prefrontal cortex and dorsal hippocampus: relation with tryptophan hydroxylase-2 activity. J Neurochem 103(3):1111–1120

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank all my coworkers that have contributed to set up, optimize, and validate the microdialysis technique applied to monoamine measurement in the rat, mouse, and gerbil brain as currently used in this author’s laboratory. This Chapter is dedicated to the memory of my mentor, Dr. R. Samanin, who passed away in 2001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto W. Invernizzi .

Editor information

Editors and Affiliations

Appendix

Appendix

List of main suppliers and Web page address

Supplier

Product

Web page address

Beckman

Collection vials

www.beckmancoulter.com

Carlo Erba Reagenti

Chemicals

www.carloerbareagents.com

Clark Electromedical

Tungsten wires

www.warneronline.com

CMA/Microdialysis

Microinfusion pump

www.microdialysis.se

Coopers Needle Work

Stainless steel tubing

www.finestainlesstube.com

Datalys

Chromatographic software

www.datalys.net

David Kopf Instruments

Stereotaxic

www.kopfinstruments.com

Eicom

Swivels

www.eicomeurope.com

Eppendorf

Tubes

www.eppendorf.com

ESA

Electrochemical detector

www.esainc.com

Fluka

Monoamine standards

www.sigmaaldrich.com

Harvard Apparatus

Microinfusion pump

www.harvardapparatus.com

Hospal

Microdialysis fibers

www.hospal.it

Instech

Swivels

www.instechlab.com

Leica

Stereomicroscope

www.leicaitalia.it

Merck

Chemicals

www.merck-chemicals.com

Microbiotech

FEP tubing

www.microbiotech.se

Millipore

HPLC-grade water

www.millipore.com

Polymicro Technologies

Silica tubing

www.polymicro.com

Portex

PE tubing

www.smithsmedical.com

Schleicher & Schuell

Disc filters

www.schleicher-schuell.com

Shimadzu

HPLC pumps

www.shimadzu.it

Shiseido

HPLC columns

www.shiseido.co.jp

Sorin Biomedica

Microdialysis fibers

www.sorin.com

Spark Holland

Autosamplers

www.sparkholland.com

SSI-LabAlliance

Pulse dampener

www.laballiance.com

Supelco

HPLC columns

www.sigmaaldrich.com

Univentor

Fraction collectors

www.univentor.com

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Invernizzi, R.W. (2013). Monitoring Extracellular Monoamines with In Vivo Microdialysis in Awake Rats: A Practical Approach. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics