Skip to main content

Quantitative In Vivo Microdialysis in Pharmacokinetic Studies

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Part of the book series: Neuromethods ((NM,volume 75))

Abstract

Recent theoretical studies have yielded a more profound knowledge of the properties of recovery (the key parameter in quantitative microdialysis) and have put in evidence important limitations of the usual in vivo calibration methods used in quantitative microdialysis for pharmacokinetic studies. Recovery values obtained by using the more classical methods of calibration (the variation of flow rate perfusion method, the delivery and retrodialysis methods, and the no net flux method) can only be used to accurately convert dialysate drug concentrations into extracellular concentrations, when the drug of interest is in the body under steady-state conditions. Therefore, these in vivo calibration procedures must not be used when the drug studied has to be administered using modalities of administration which do not provide steady-state concentrations (for example, intragastric, subcutaneous, intraperitoneal, or intravenous bolus injections). The dynamic no net flux (DNNF) method, however, can be considered the only in vivo calibration method useful in PK experiments developed under transient conditions, although this calibration procedure has several serious disadvantages. The new modified version of the ultraslow microdialysis (the MetaQuant technique) overcomes many of the limitations of both the classical calibration and the DNNF methods and, therefore, it could be considered a promising tool in pharmacokinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C d :

Drug concentration in the dialysate

C ecf :

Drug concentration in the extracellular fluid

C in :

Drug concentration in perfusate

CSF:

Cerebrospinal fluid

DNNF:

Dynamic no net flux method

E :

Extraction fraction, extraction efficiency or recovery

ECF:

Extracellular fluid

MD:

Microdialysis

NNF:

No net flux

PK:

Pharmacokinetics

Q :

Perfusion flow rate

References

  1. Brunner M, Müller M (2002) Microdialysis: an in vivo approach for measuring drug delivery in oncology. Eur J Clin Pharmacol 58(4):227–234

    Article  PubMed  CAS  Google Scholar 

  2. Müller M, dela Pena A, Derendorf H (2004) Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 48:1441–1453

    Article  PubMed  Google Scholar 

  3. Brunner M, Derendorf H, Müller M (2005) Microdialysis for in vivo pharmacokinetic/pharmacodynamic characterization of anti-infective drugs. Curr Opin Pharmacol 5(5):495–499

    Article  PubMed  CAS  Google Scholar 

  4. Langer O, Müller M (2004) Methods to assess tissue-specific distribution and metabolism of drugs. Curr Drug Metab 5(6):463–481

    Article  PubMed  CAS  Google Scholar 

  5. Stenken JA, Holunga DM, Decker SA, Sun L (2001) Experimental and theoretical microdialysis studies of in situ metabolism. Anal Biochem 290(2):314–323

    Article  PubMed  CAS  Google Scholar 

  6. Hsiao JK, Ball BA, Morrison PF, Mefford IN, Bungay PM (1990) Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J Neurochem 54(4):1449–1452

    Article  PubMed  CAS  Google Scholar 

  7. Tao R, Hjorth S (1992) Differences in the in vitro and in vivo 5-hydroxytryptamine extraction performance among three common microdialysis membranes. J Neurochem 59(5):1778–1785

    Article  PubMed  CAS  Google Scholar 

  8. Kendrick KM (1989) Use of microdialysis in neuroendocrinology. Methods Enzymol 168:182–205

    Article  PubMed  CAS  Google Scholar 

  9. Johnson RD, Justice JB (1983) Model studies for brain dialysis. Brain Res Bull 10(4):567–571

    Article  PubMed  CAS  Google Scholar 

  10. Raei N (2000) Influence of the dialysis membrane nature on the pharmacokinetic parameters derived from microdialysis experiments. Tesis de Licenciatura, Universidad de Valencia

    Google Scholar 

  11. Jacobson I, Sandberg M, Hamberger A (1985) Mass transfer in brain dialysis devices: a new method for the estimation of extracellular amino acids concentration. J Neurosci Methods 15(3):263–268

    Article  PubMed  CAS  Google Scholar 

  12. Rosdahl H, Ungerstedt U, Henriksson J (1997) Microdialysis in human skeletal muscle and adipose tissue at low flow rates is possible if dextran-70 is added to prevent loss of perfusion fluid. Acta Physiol Scand 159(3):261–262

    Article  PubMed  CAS  Google Scholar 

  13. Heppert KE, Flora WH, Davies MI (1998) The importance of balancing bile salt concentration to avoid fluid loss when using the microdialysis shunt probe. Curr Separations 17:61–63

    CAS  Google Scholar 

  14. Moghaddam B, Bunney BS (1989) Ionic composition of microdialysis perfusing solution alters the pharmacological responsiveness and basal outflow of striatal dopamine. J Neurochem 53(2):652–654

    Article  PubMed  CAS  Google Scholar 

  15. Cosford RJ, Parsons LH, Justice JB Jr (1994) Effect of tetrodotoxin and potassium infusion on microdialysis extraction fraction and extracellular dopamine in the nucleus accumbens. Neurosci Lett 178:175–178

    Article  PubMed  CAS  Google Scholar 

  16. de Lange ECM, Danhof M, de Boer AG, Breimer DD (1994) Critical factors of intracerebral microdialysis as a technique to determine the pharmacokinetics of drugs in rat brain. Brain Res 666(1):1–8

    Article  PubMed  Google Scholar 

  17. Borg N, Ståhle L (1999) Recovery as a function of the osmolality of the perfusion medium in microdialysis experiments. Anal Chim Acta 379:319–325

    Article  CAS  Google Scholar 

  18. Lindefors N, Amberg G, Ungerstedt U (1989) Intracerebral microdialysis: I. Experimental studies of diffusion kinetics. J Pharmacol Methods 22(3):141–156

    Article  PubMed  CAS  Google Scholar 

  19. Benveniste H, Hansen AJ, Ottosen NS (1989) Determination of brain interstitial concentrations by microdialysis. J Neurochem 52(6):1741–1750

    Article  PubMed  CAS  Google Scholar 

  20. Nicholson C, Phillips JM (1981) Ion diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum. J Physiol 321:225–257

    PubMed  CAS  Google Scholar 

  21. Nicholson C, Syková E (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci 21(5):207–215

    Article  PubMed  CAS  Google Scholar 

  22. Nicholson C (2001) Diffusion and related transport properties in brain tissue. Rep Prog Phys 64:815–864

    Article  CAS  Google Scholar 

  23. Bungay PM, Morrison PF, Dedrick RL (1990) Steady-state theory for quantitative microdialysis of solutes and water in vivo and in vitro. Life Sci 46(2):105–119

    Article  PubMed  CAS  Google Scholar 

  24. Morrison PF, Bungay PM, Hsiao JK, Ball BA, Mafford IN, Dedrick RL (1991) Quantitative microdialysis. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neurosciences. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  25. Bungay PM, Dykstra KH, Morrison PF, Dedrick RL (1991) Comparison of mathematical models of microdialysis. Curr Separations 10:106–117

    Google Scholar 

  26. Morrison PF, Bungay PM, Hsiao JK, Ball BA, Mefford IN, Dedrick RL (1991) Quantitative microdialysis: analysis of transients and application to pharmacokinetics in brain. J Neurochem 57(1):103–119

    Article  PubMed  CAS  Google Scholar 

  27. Zetterstrom T, Vernet L, Ungerstedt U, Tossman U, Jonzon B, Fredholm BB (1982) Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett 29(2):111–115

    Article  PubMed  CAS  Google Scholar 

  28. Benveniste H, Hüttemeier PC (1990) Microdialysis: theory and application. Prog Neurobiol 35:195–215

    Article  PubMed  CAS  Google Scholar 

  29. Parsons LH, Justice JB Jr (1992) Extracellular concentration and in vivo recovery of dopamine in the nucleus accumbens using microdialysis. J Neurochem 58(1):212–218

    Article  PubMed  CAS  Google Scholar 

  30. Höistad M, Chen KC, Nicholson C, Fuxe K, Kehr J (2002) Quantitative dual-probe microdialysis: evaluation of (3H)mannitol diffusion in agar and rat striatum. J Neurochem 81(1):80–93

    Article  PubMed  Google Scholar 

  31. Dykstra KH, Hsiao JK, Morrison PF, Bungay PM, Mefford IN, Scully MM, Dedrich RL (1992) Quantitative examination of tissue concentration profiles associated with microdialysis. J Neurochem 58(3):931–940

    Article  PubMed  CAS  Google Scholar 

  32. Menacherry S, Hubert W, Justice JB Jr (1992) In vivo calibration of microdialysis probes for exogenous compounds. Anal Chem 64(6):577–583

    Article  PubMed  CAS  Google Scholar 

  33. Parsons LH, Justice JB Jr (1994) Quantitative approaches to in vivo brain microdialysis. Crit Rev Neurobiol 8(3):189–220

    PubMed  CAS  Google Scholar 

  34. Chen KC, Höistad M, Kehr J, Fuxe K, Nicholson C (2002) Quantitative dual-probe microdialysis: mathematical model and analysis. J Neurochem 81(1):94–107

    Article  PubMed  CAS  Google Scholar 

  35. Tang A, Bungay PM, Gonzales RA (2003) Characterization of probe and tissue factors that influence interpretation of quantitative microdialysis experiments for dopamine. J Neurosci Methods 126(1):1–11

    Article  PubMed  CAS  Google Scholar 

  36. Bungay PM, Dedrick RL, Fox E, Balis FM (2001) Probe calibration in transient microdialysis in vivo. Pharm Res 18(3):361–366

    Article  PubMed  CAS  Google Scholar 

  37. Stahle L (1991) The use of microdialysis in pharmacokinetics and pharmacodynamics. In: Robinson TE, Justice JB Jr (eds) Microdialysis in the neurosciences. Elsevier Science Publishers BV, Amsterdam

    Google Scholar 

  38. Stahle L, Segersvärd S, Ungerstedt U (1991) A comparison between three methods for estimation of extracellular concentrations of exogenous and endogenous compounds by microdialysis. J Pharmacol Methods 25(1):41–52

    Article  PubMed  CAS  Google Scholar 

  39. Wages SA, Church WH, Justice JB Jr (1986) Sampling considerations for on-line microbore liquid chromatography of brain dialysate. Anal Chem 58(8):1649–1658

    Article  PubMed  CAS  Google Scholar 

  40. Cremers TI, de Vries MG, Huinink KD, van Loon JP, v d Hart M, Ebert B, Westerink BH, De Lange EC (2009) Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique. J Neurosci Methods 178(2):249–254

    Article  PubMed  CAS  Google Scholar 

  41. Van Belle K, Dzeka T, Sarre S, Ebinger G, Michotte Y (1993) In vitro and in vivo ­microdialysis calibration for the measurement of carbamazepine and its metabolites in rat brain tissue using the internal reference technique. J Neurosci Methods 49(3):167–173

    Article  PubMed  Google Scholar 

  42. Sauernheimer C, Williams KM, Brune K, Geisslinger G (1994) Application of microdialysis to the pharmacokinetics of analgesics: problems with reduction of dialysis efficiency in vivo. J Pharmacol Toxicol Methods 32(3):149–154

    Article  PubMed  CAS  Google Scholar 

  43. Zhao Y, Liang X, Lunte CE (1995) Comparison of recovery and delivery in vitro for calibration of microdialysis probes. Anal Chim Acta 316:403–410

    Article  CAS  Google Scholar 

  44. Robinson DL, Lara JA, Brunner LJ, Gonzales RA (2000) Quantification of ethanol concentrations in the extracellular fluid of the rat brain: in vivo calibration of microdialysis probes. J Neurochem 75(4):685–1693

    Google Scholar 

  45. Ståhle L (1994) Zidovudine and alovudine as cross-wise recovery internal standards in microdialysis experiments? J Pharmacol Toxicol Methods 31(3):167–169

    Article  PubMed  Google Scholar 

  46. Larsson CI (1991) The use of an “internal standard” for control of the recovery in microdialysis. Life Sci 49(13):73–78

    Article  Google Scholar 

  47. Wong SL, Wang Y, Sawchuk RJ (1992) Analysis of zidovudine distribution to specific regions in rabbit brain using microdialysis. Pharm Res 9(3):332–338

    Article  PubMed  CAS  Google Scholar 

  48. Wang Y, Wong SL, Sawchuk RJ (1993) Microdialysis calibration using retrodialysis and zero-net flux: application to a study of the distribution of zidovudine to rabbit cerebrospinal fluid and thalamus. Pharm Res 10(10):1411–1419

    Article  PubMed  CAS  Google Scholar 

  49. Bouw MR, Hammarlund-Udenaes M (1998) Methodological aspects of the use of a calibrator in in vivo microdialysis-further development of the retrodialysis method. Pharm Res 15(11):1673–1679

    Article  PubMed  CAS  Google Scholar 

  50. Lönnroth P, Jansson PA, Smith U (1987) A microdialysis method allowing characterization of intercellular water space in humans. Am J Physiol 253(2 pt 1):228–231

    Google Scholar 

  51. Song Y, Lunte CE (1999) Comparison of calibration by delivery versus no net flux for quantitative in vivo microdialysis sampling. Anal Chim Acta 379(3):251–262

    Article  CAS  Google Scholar 

  52. Sjöberg P, Olofsson IM, Lundqvist T (1992) Validation of different microdialysis methods for the determination of unbound steady-state concentrations of theophylline in blood and brain tissue. Pharm Res 9(12):1592–1598

    Article  PubMed  Google Scholar 

  53. Rollema H, Westerink B, Drijfhout WJ (1991) Monitoring Molecules in Neuroscience: Proceedings of the 5th International Conference on in Vivo Methods; Krips Repro, Meppel: The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Granero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zornoza, T., Cano-Cebrián, M.J., Polache, A., Granero, L. (2013). Quantitative In Vivo Microdialysis in Pharmacokinetic Studies. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics