Skip to main content

Monitoring Extracellular Amino Acid Neurotransmitters and hROS by In Vivo Microdialysis in Rats: A Practical Approach

  • Protocol
  • First Online:
Microdialysis Techniques in Neuroscience

Abstract

The microdialysis technique has proved to be a powerful neuropharmacological tool for the measurement of extracellular levels of neurotransmitters in brains of freely moving animals. However, care in its application is essential if reliable results are to be obtained. More recent developments have made it possible to detect the release of highly reactive oxygen species (hROS) in the same systems as those used for determining amino acid neurotransmitter release. This chapter is intended to help in obtaining reliable and reproducible results by describing practical aspects of in vivo microdialysis in the rat, as applied to the determination of hROS and amino acid release in the same experiment. The presentation and validation of the results obtained are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

aCSF:

Artificial cerebrospinal fluid

DNQX:

6,7-Dinitroquinoxaline-2,3-dione

hROS:

Highly reactive oxygen species

KA:

Kainate

OH-TA:

2-Hydroxyterephthalate

OPA:

o-Phthalaldehyde

TA2− :

Terephthalic acid, terephthalate

RT:

Retention time

TTX:

Tetrodotoxin

References

  1. Ungerstedt U, Pycock C (1974) Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss 30:44–55

    PubMed  CAS  Google Scholar 

  2. Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. Curr Protoc Neurosci 47:7.1.1–7.1.28

    Google Scholar 

  3. Dingledine R, Bain CJ (199) Glutamate and aspartate. In: Siegel GJ (ed) Basic neurochemistry. Lippincott-Raven, Philadelphia, pp 315–333

    Google Scholar 

  4. Della Corte L, Crichton RR, Duburs G, Nolan K, Tipton KF, Tirzitis G, Ward RJ (2002) The use of taurine analogues to investigate taurine functions and their potential therapeutic applications. Amino Acids 23:367–379

    Article  PubMed  CAS  Google Scholar 

  5. Bianchi L, Colivicchi MA, Ballini C, Fattori M, Venturi C, Giovannini MG, Healy J, Tipton KF, Della Corte L (2006) Taurine, taurine analogues, and taurine functions: overview. Adv Exp Med Biol 583:443–448

    Article  PubMed  CAS  Google Scholar 

  6. Bianchi L, Della Corte L, Tipton KF (1999) Simultaneous determination of basal and evoked output levels of aspartate, glutamate, taurine and 4-aminobutyric acid during microdialysis and from superfused brain slices. J Chromatogr B Biomed Sci Appl 723:47–59

    Article  PubMed  CAS  Google Scholar 

  7. Pryor WA (1986) Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 48:657–667

    Article  PubMed  CAS  Google Scholar 

  8. Freinbichler W, Tipton KF, Della Corte L, Linert W (2009) Mechanistic aspects of the Fenton reaction under conditions approximated to the extracellular fluid. J Inorg Biochem 103:28–34

    Article  PubMed  CAS  Google Scholar 

  9. Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  10. Moskovitz J, Yim MB, Chock PB (2002) Free radicals and disease. Arch Biochem Biophys 397:354–359

    Article  PubMed  CAS  Google Scholar 

  11. Stone JR, Yang S (2004) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  Google Scholar 

  12. D’Autréaux B, Toledano MB (2007) ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature Rev Mol Cell Biol 8:813–824

    Article  Google Scholar 

  13. Forman HJ, Fukuto JM, Miller T, Zhang H, Rinna A, Levy S (2008) The chemistry of cell signaling by reactive oxygen and nitrogen species and 4-hydroxynonenal. Arch Biochem Biophys 477:183–195

    Article  PubMed  CAS  Google Scholar 

  14. Saran M, Michel C, Stettmaier K, Bors W (2000) Arguments against the significance of the fenton reaction contributing to signal pathways under in vivo conditions. Free Radic Res 33:567–579

    Article  PubMed  CAS  Google Scholar 

  15. Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, Della Corte L (2011) Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68:2067–2079

    Article  PubMed  CAS  Google Scholar 

  16. Freinbichler W, Colivicchi MA, Fattori M, Ballini C, Tipton KF, Linert W, Della Corte L (2008) Validation of a robust and sensitive method for detecting hydroxyl radical formation together with evoked neurotransmitter release in brain microdialysis. J Neurochem 105:738–749

    Article  PubMed  CAS  Google Scholar 

  17. Koppenol WH, Liebman JF (1984) The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO +2 ). J Phys Chem 88:99–101

    Article  CAS  Google Scholar 

  18. Steffes S, Sandstrom M (2008) Constructing inexpensive, flexible, and versatile microdialysis probes in an undergraduate microdialysis research lab. J Undergrad Neurosci Educ 7:A33–A47

    Google Scholar 

  19. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Sydney

    Google Scholar 

  20. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15:133–139

    Article  PubMed  CAS  Google Scholar 

  21. Fekkes D, van Dalen A, Edelman M, Voskuilen A (1995) Validation of the determination of amino acids in plasma by high-performance liquid chromatography using automated pre-column derivatization with o-phthaldialdehyde. J Chromatogr B Biomed Appl 669:177–186

    Article  CAS  Google Scholar 

  22. Montgomery J, Ste-Marie L, Boismenu D, Vachon L (1995) Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Free Radic Biol Med 19:927–933

    Article  PubMed  CAS  Google Scholar 

  23. Clapp-Lilly KL, Roberts RC, Duffy LK, Irons KP, Hu Y, Drew KL (1999) An ultrastructural analysis of tissue surrounding a microdialysis probe. J Neurosci Methods 90:129–142

    Article  PubMed  CAS  Google Scholar 

  24. Vezzani A, Ruiz R, Monno A, Rizzi M, Lindefors N, Samanin R, Brodin E (1993) Extracellular somatostatin measured by microdialysis in the hippocampus of freely moving rats: evidence for neuronal release. J Neurochem 60:671–677

    Article  PubMed  CAS  Google Scholar 

  25. Melendez RI, Vuthiganon J, Kalivas PW (2005) Regulation of extracellular glutamate in the prefrontal cortex: focus on the cystine glutamate exchanger and group I metabotropic glutamate receptors. J Pharmacol Exp Ther 314:139–147

    Article  PubMed  CAS  Google Scholar 

  26. Ballini C, Della Corte L, Pazzagli M, Colivicchi MA, Pepeu G, Tipton KF, Giovannini MG (2008) Extracellular levels of brain aspartate, glutamate and GABA during an inhibitory avoidance response in the rat. J Neurochem 106:1035–1043

    Article  PubMed  CAS  Google Scholar 

  27. Bianchi L, Colivicchi MA, Bolam JP, Della Corte L (1998) The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 87:171–180

    Article  PubMed  CAS  Google Scholar 

  28. Plock N, Kloft C (2005) Microdialysis—theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci 25:1–24

    Article  PubMed  CAS  Google Scholar 

  29. Galeffi F, Bianchi L, Bolam JP, Della Corte L (2003) The effect of 6-hydroxydopamine lesions on the release of amino acids in the direct and indirect pathway of the basal ganglia: a dual microdialysis probe analysis. Eur J Neurosci 18:856–868

    Article  PubMed  CAS  Google Scholar 

  30. van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH (2008) Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav 90:135–147

    Article  PubMed  Google Scholar 

  31. Girault JA, Barbeito L, Spampinato U, Gozlan H, Glowinski J, Besson MJ (1986) In vivo release of endogenous amino acids from the rat striatum: further evidence for a role of glutamate and aspartate in corticostriatal neurotransmission. J Neurochem 47:98–106

    Article  PubMed  CAS  Google Scholar 

  32. Drew KL, O’Connor WT, Kehr J, Ungerstedt U (1989) Characterization of gamma-aminobutyric acid and dopamine overflow following acute implantation of a microdialysis probe. Life Sci 45:1307–1317

    Article  PubMed  CAS  Google Scholar 

  33. Osborne PG, O’Connor WT, Drew KL, Ungerstedt U (1990) An in vivo microdialysis characterization of extracellular dopamine and GABA in dorsolateral striatum of awake freely moving and halothane anaesthetised rats. J Neurosci Methods 34:99–105

    Article  PubMed  CAS  Google Scholar 

  34. Campbell K, Kalén P, Wictorin K, Lundberg C, Mandel RJ, Björklund A (1993) Characterization of GABA release from intrastriatal striatal transplants: dependence on host-derived afferents. Neuroscience 53:403–415

    Article  PubMed  CAS  Google Scholar 

  35. Morari M, O’Connor WT, Ungerstedt U, Fuxe K (1993) N-methyl-D-aspartic acid differentially regulates extracellular dopamine, GABA, and glutamate levels in the dorsolateral neostriatum of the halothane-anesthetized rat: an in vivo microdialysis study. J Neurochem 60:1884–1893

    Article  PubMed  CAS  Google Scholar 

  36. Rimondini R, O’Connor WT, Ferré S, Sillard R, Agerberth B, Mutt V, Ungerstedt U, Fuxe K (1994) PEC-60 increases dopamine but not GABA release in the dorsolateral neostriatum of the halothane anaesthetized rat. An in vivo microdialysis study. Neurosci Lett 177:53–57

    Article  PubMed  CAS  Google Scholar 

  37. Ferraro L, O’Connor WT, Li X-M, Rimondini R, Beani L, Ungerstedt U, Fuxe K, Tanganelli S (1996) Evidence for differential cholecystokinin-B and A receptor regulation of GABA release in the rat nucleus accumbens mediated via dopaminergic and cholinergic mechanisms. Neuroscience 73:941–950

    Article  PubMed  CAS  Google Scholar 

  38. Ferraro L, O’Connor WT, Glennon J, Tomasini MC, Bebe BW, Tanganelli S, Antonelli T (2000) Evidence for a nucleus accumbens CCK2 receptor regulation of rat ventral pallidal GABA levels: a dual probe microdialysis study. Life Sci 68:483–496

    Article  PubMed  CAS  Google Scholar 

  39. Osborne PG, O’Connor WT, Kehr J, Ungerstedt U (1991) In vivo characterisation of extracellular dopamine, GABA and acetylcholine from the dorsolateral striatum of awake freely moving rats by chronic microdialysis. J Neurosci Methods 37:93–102

    Article  PubMed  CAS  Google Scholar 

  40. Shuaib A, Xu K, Crain B, Sirén AL, Feuerstein G, Hallenbeck J, Davis JN (1990) Assessment of damage from implantation of microdialysis probes in the rat hippocampus with silver degeneration staining. Neurosci Lett 112:149–154

    Article  PubMed  CAS  Google Scholar 

  41. Jaquins-Gerstl A, Michael AC (2009) Comparison of the brain penetration injury associated with microdialysis and voltammetry. J Neurosci Methods 183:127–135

    Article  PubMed  Google Scholar 

  42. Hascup ER, af Bjerkén S, Hascup KN, Pomerleau F, Huettl P, Strömberg I, Gerhardt GA (2009) Histological studies of the effects of chronic implantation of ceramic-based microelectrode arrays and microdialysis probes in rat prefrontal cortex. Brain Res 1291:12–20

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Ente Cassa di Risparmio di Firenze (Firenze, Italy) for financial support, ERAB (Brussels, Belgium), and the EU COST action D34 and CM1103 for supporting our international cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Della Corte .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Sources of Materials

Most chemicals can be obtained from more than one supplier and should be of the highest purity available. Only those sources not given in the text are listed here.

  • Acrylic cement. Self-curing acrylic cement was purchased from Kerr Italia (Salerno, Italy).

  • Chloral hydrate, glacial acetic acid, methanol and potassium acetate, and all salts used to prepare aCSF were from Merck (Milano Italy).

  • Cresyl fast Violet, DNQX, KA, 2-mercaptoethanol, ortho-bromoterephthalic acid, o-phthalaldehyde, terephthalic acid, and TTX were from Sigma Aldrich (Milano, Italy).

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Colivicchi, M.A. et al. (2013). Monitoring Extracellular Amino Acid Neurotransmitters and hROS by In Vivo Microdialysis in Rats: A Practical Approach. In: Di Giovanni, G., Di Matteo, V. (eds) Microdialysis Techniques in Neuroscience. Neuromethods, vol 75. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-173-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-173-8_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-172-1

  • Online ISBN: 978-1-62703-173-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics