Skip to main content

Dominant-Negative and Knockdown Approaches to Studying PPAR Activity

  • Protocol
  • First Online:
Peroxisome Proliferator-Activated Receptors (PPARs)

Part of the book series: Methods in Molecular Biology ((MIMB,volume 952))

  • 1987 Accesses

Abstract

Manipulation of PPAR activity is often a valuable approach toward elucidation of the cellular effects of PPARs. The activity of specific PPARs can be decreased using chemical inhibitors, but these approaches can be affected by nonspecific interactions or cell toxicity. Alternative approaches include targeting PPAR gene expression or activity through molecular biology strategies. Here, we describe the targeting of PPARĪ³ through dominant-negative and siRNA-mediated knockdown constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARĪ³. Annu Rev Biochem 77:289ā€“312

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Agostini M, Schoenmakers E, Mitchell C et al (2006) Non-DNA binding, dominant-negative, human PPARĪ³ mutations cause lipodystrophic insulin resistance. Cell Metab 4:303ā€“311

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  3. Barroso I, Gurnell M, Crowley V et al (1999) Dominant negative mutations in human PPARĪ³ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880ā€“883

    PubMedĀ  CASĀ  Google ScholarĀ 

  4. Masugi J, Tamori Y, Kasuga M (1999) Inhibition of adipogenesis by a COOH-terminally truncated mutant of PPARĪ³2 in 3T3-L1 cells. Biochem Biophys Res Commun 264:93ā€“99

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  5. Ferguson HE, Kulkarni A, Lehmann G et al (2009) Electrophilic peroxisome proliferator-activated receptor-Ī³ ligands have potent antifibrotic effects in human lung fibroblasts. Am J Respir Cell Mol Biol 41:722ā€“730

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  6. Gurnell M, Wentworth J, Agostini M et al (2000) A dominant-negative peroxisome proliferator-activated receptor Ī³ (PPARĪ³) mutant is a constitutive repressor and inhibits PPARĪ³-mediated adipogenesis. J Biol Chem 275:5754ā€“5759

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Hata K, Nishimura R, Ikeda F et al (2003) Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol Biol Cell 14:545ā€“555

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  8. Park Y, Freedman B, Lee E et al (2003) A dominant negative PPARĪ³ mutant shows altered cofactor recruitment and inhibits adipogenesis in 3T3-L1 cells. Diabetologia 46:365ā€“377

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Wada K, Nakajima A, Katayama K et al (2006) Peroxisome proliferator-activated receptor Ī³-mediated regulation of neural stem cell proliferation and differentiation. J Biol Chem 281:12673ā€“12681

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  10. Semple RK, Meirhaeghe A, Vidal-Puig A et al (2005) A dominant negative human peroxisome proliferator-activated receptor (PPAR) Ī± is a constitutive transcriptional corepressor and inhibits signaling through all PPAR isoforms. Endocrinology 146:1871ā€“1882

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  11. Bastie C, Luquet S, Holst D et al (2000) Alterations of peroxisome proliferator-activated receptor Ī“ activity affect fatty acid-controlled adipose differentiation. J Biol Chem 275:38768ā€“38773

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Nahle Z, Hsieh M, Pieka T et al (2008) CD36-dependent regulation of muscle FoxO1 and PDK4 in the PPARĪ“/Ī²-mediated Adaptation to Metabolic Stress. J Biol Chem 283:14317ā€“14326

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Singh S, Bennett RG (2010) Relaxin signaling activates peroxisome proliferator-activated receptor gamma. Mol Cell Endocrinol 315:239ā€“245

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  14. Singh S, Bennett RG (2009) Relaxin family peptide receptor 1 activation stimulates peroxisome proliferator-activated receptor gamma. Ann N Y Acad Sci 1160:112ā€“116

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Elbashir SM, Harborth J, Weber K et al (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26:199ā€“213

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Liu J, Carmell M, Rivas F et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437ā€“1441

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326ā€“330

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Forman BM, Tontonoz P, Chen J et al (1995) 15-Deoxy-Ī”12,14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARĪ³. Cell 83:803ā€“812

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Palmer CNA, Hsu M, Griffin H et al (1995) Novel sequence determinants in peroxisome proliferator signaling. J Biol Chem 270:16114ā€“16121

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  20. Varanasi U, Chu R, Huang Q et al (1996) Identification of a peroxisome proliferator-responsive element upstream of the human peroxisomal fatty acyl coenzyme A oxidase gene. J Biol Chem 271:2147ā€“2155

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  21. Jiang C, Ting AT, Seed B (1998) PPARĪ³ agonists inhibit production of monocyte inflammatory cytokines. Nature 391:82ā€“86

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Dion LD, Fang J, Garver RI (1996) Supernatant rescue assay vs. polymerase chain reaction for detection of wild type adenovirus-contaminating recombinant adenovirus stocks. J Virol Methods 56:99ā€“107

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

Supported by funding through The Department of Veterans Affairs Biomedical Laboratory Research and Development Program, NIAAA (AA015509), and the Bly Memorial Research Fund (RGB), and by a University of Nebraska Medical Center Graduate College Fellowship (SS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Bennett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Singh, S., Bennett, R.G. (2013). Dominant-Negative and Knockdown Approaches to Studying PPAR Activity. In: Badr, M., Youssef, J. (eds) Peroxisome Proliferator-Activated Receptors (PPARs). Methods in Molecular Biology, vol 952. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-155-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-155-4_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-154-7

  • Online ISBN: 978-1-62703-155-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics