Skip to main content

Elucidation of N-Glycosites Within Human Plasma Glycoproteins for Cancer Biomarker Discovery

  • Protocol
  • First Online:
Mass Spectrometry of Glycoproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 951))

Abstract

Glycans are an important class of post-translational modifications that decorate a wide array of protein substrates. These cell-type specific molecules, which are modulated during developmental and disease processes, are attractive biomarker candidates as biology regarding altered glycosylation can be used to guide the experimental design. The mass spectrometry (MS)-based workflow described here incorporates chromatography on affinity matrices formed from lectins, proteins that bind specific glycan motifs. The goal was to design a relatively simple method for the rapid analysis of small plasma volumes (e.g., clinical specimens). As increases in sialylation and fucosylation are prominent among cancer-associated modifications, we focused on Sambucus nigra agglutinin and AAL, which bind sialic acid- and fucose-containing structures, respectively. Positive controls (fucosylated and sialylated human lactoferrin glycopeptides), and negative controls (high-mannose glycopeptides from Saccharomyces cerevisiae invertase) were used to monitor the specificity of lectin capture and optimize the workflow. Multiple Affinity Removal System 14-depleted, trypsin-digested human plasma from healthy donors served as the target analyte. Samples were loaded onto the lectin columns and separated by high performance liquid chromatography (HPLC) into flow through and bound fractions, which were treated with PNGase F, an amidase that removes N-linked glycans and marks the underlying asparagine glycosite by a +1 Da mass shift. The deglycosylated peptide fractions were interrogated by HPLC ESI-MS/MS on a quadrupole time-of-flight mass spectrometer. The method allowed identification of 122 human plasma glycoproteins containing 247 unique glycosites. Notably, glycoproteins that circulate at ng/mL levels (e.g., cadherin-5 at 0.3–4.9 ng/mL, and neutrophil gelatinase-associated lipocalin which is present at ∼2.5 ng/mL) were routinely observed, suggesting that this method enables the detection of low-abundance cancer-specific glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meezan E, Wu HC, Black PH, Robbins PW (1969) Comparative studies on the carbohydrate-containing membrane components of normal and virus-transformed mouse fibroblasts. II. Separation of glycoproteins and glycopeptides by sephadex chromatography. Biochemistry 8:2518–2524

    Article  CAS  PubMed  Google Scholar 

  2. Barkauskas DA, An HJ, Kronewitter SR, de Leoz ML, Chew HK, de Vere White RW, Leiserowitz GS, Miyamoto S, Lebrilla CB, Rocke DM (2009) Detecting glycan cancer biomarkers in serum samples using MALDI FT-ICR mass spectrometry data. Bioinformatics 25:251–257

    Article  CAS  PubMed  Google Scholar 

  3. Goldberg D, Bern M, Parry S, Sutton-Smith M, Panico M, Morris HR, Dell A (2007) Automated N-glycopeptide identification using a combination of single- and tandem-MS. J Proteome Res 6:3995–4005

    Article  CAS  PubMed  Google Scholar 

  4. Harvey DJ (2005) Structural determination of N-linked glycans by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Proteomics 5:1774–1786

    Article  CAS  PubMed  Google Scholar 

  5. North SJ, Hitchen PG, Haslam SM, Dell A (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19:498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Royle L, Campbell MP, Radcliffe CM, White DM, Harvey DJ, Abrahams JL, Kim YG, Henry GW, Shadick NA, Weinblatt ME, Lee DM, Rudd PM, Dwek RA (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Wong SC, Chan CM, Ma BB, Lam MY, Choi GC, Au TC, Chan AS, Chan AT (2009) Advanced proteomic technologies for cancer biomarker discovery. Expert Rev Proteomics 6:123–134

    Article  CAS  PubMed  Google Scholar 

  8. Barrabes S, Pages-Pons L, Radcliffe CM, Tabares G, Fort E, Royle L, Harvey DJ, Moenner M, Dwek RA, Rudd PM, De Llorens R, Peracaula R (2007) Glycosylation of serum ribonuclease 1 indicates a major endothelial origin and reveals an increase in core fucosylation in pancreatic cancer. Glycobiology 17:388–400

    Article  CAS  PubMed  Google Scholar 

  9. Kuzmanov U, Jiang N, Smith CR, Soosaipillai A, Diamandis EP (2009) Differential N-glycosylation of kallikrein 6 derived from ovarian cancer cells or the central nervous system. Mol Cell Proteomics 8:791–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meany DL, Zhang Z, Sokoll LJ, Zhang H, Chan DW (2009) Glycoproteomics for prostate cancer detection: changes in serum PSA glycosylation patterns. J Proteome Res 8:613–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Misonou Y, Shida K, Korekane H, Seki Y, Noura S, Ohue M, Miyamoto Y (2009) Comprehensive clinico-glycomic study of 16 colorectal cancer specimens: elucidation of aberrant glycosylation and its mechanistic causes in colorectal cancer cells. J Proteome Res 8:2990–3005

    Article  CAS  PubMed  Google Scholar 

  12. Mizuochi T, Nishimura R, Derappe C, Taniguchi T, Hamamoto T, Mochizuki M, Kobata A (1983) Structures of the asparagine-linked sugar chains of human chorionic gonadotropin produced in choriocarcinoma. Appearance of triantennary sugar chains and unique biantennary sugar chains. J Biol Chem 258:14126–14129

    CAS  PubMed  Google Scholar 

  13. Ohyama C, Hosono M, Nitta K, Oh-eda M, Yoshikawa K, Habuchi T, Arai Y, Fukuda M (2004) Carbohydrate structure and differential binding of prostate specific antigen to Maackia amurensis lectin between prostate cancer and benign prostate hypertrophy. Glycobiology 14:671–679

    Article  CAS  PubMed  Google Scholar 

  14. Taylor AD, Hancock WS, Hincapie M, Taniguchi N, Hanash SM (2009) Towards an integrated proteomic and glycomic approach to finding cancer biomarkers. Genome Med 1:57

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cho W, Jung K, Regnier FE (2008) Use of glycan targeting antibodies to identify cancer-associated glycoproteins in plasma of breast cancer patients. Anal Chem 80:5286–5292

    Article  CAS  PubMed  Google Scholar 

  16. Heo SH, Lee SJ, Ryoo HM, Park JY, Cho JY (2007) Identification of putative serum glycoprotein biomarkers for human lung adenocarcinoma by multilectin affinity chromatography and LC-MS/MS. Proteomics 7:4292–4302

    Article  CAS  PubMed  Google Scholar 

  17. Jung K, Cho W, Regnier FE (2009) Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. J Proteome Res 8:643–650

    Article  CAS  PubMed  Google Scholar 

  18. Kaji H, Saito H, Yamauchi Y, Shinkawa T, Taoka M, Hirabayashi J, Kasai K, Takahashi N, Isobe T (2003) Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nat Biotechnol 21:667–672

    Article  CAS  PubMed  Google Scholar 

  19. Plavina T, Wakshull E, Hancock WS, Hincapie M (2007) Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J Proteome Res 6:662–671

    Article  CAS  PubMed  Google Scholar 

  20. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  CAS  PubMed  Google Scholar 

  21. Drake PM, Schilling B, Niles RK, Braten M, Johansen E, Liu H, Lerch M, Sorensen DJ, Li B, Allen S, Hall SC, Witkowska HE, Regnier FE, Gibson BW, Fisher SJ (2011) A lectin affinity workflow targeting glycosite-specific, cancer-related carbohydrate structures in trypsin-digested human plasma. Anal Biochem 408:71–85

    Article  CAS  PubMed  Google Scholar 

  22. Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA (2007) Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 6:2212–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Soeki T, Tamura Y, Shinohara H, Sakabe K, Onose Y, Fukuda N (2004) Elevated concentration of soluble vascular endothelial cadherin is associated with coronary atherosclerosis. Circ J 68:1–5

    Article  CAS  PubMed  Google Scholar 

  24. Krokhin OV, Antonovici M, Ens W, Wilkins JA, Standing KG (2006) Deamidation of -Asn-Gly- sequences during sample preparation for proteomics: consequences for MALDI and HPLC-MALDI analysis. Anal Chem 78:6645–6650

    Article  CAS  PubMed  Google Scholar 

  25. Matsumoto A, Yoshima H, Takasaki S, Kobata A (1982) Structural study of the sugar chains of human lactoferrin: finding of four novel complex-type asparagine-linked sugar chains. J Biochem 91:143–155

    CAS  PubMed  Google Scholar 

  26. Spik G, Strecker G, Fournet B, Bouquelet S, Montreuil J, Dorland L, van Halbeek H, Vliegenthart JF (1982) Primary structure of the glycans from human lactotransferrin. Eur J Biochem 121:413–419

    Article  CAS  PubMed  Google Scholar 

  27. Trimble RB, Atkinson PH (1986) Structure of yeast external invertase Man8-14GlcNAc processing intermediates by 500-megahertz 1H NMR spectroscopy. J Biol Chem 261:9815–9824

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Clinical Proteomic Technologies for Cancer initiative, 5U24CA126477-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Drake, P., Schilling, B., Gibson, B., Fisher, S. (2013). Elucidation of N-Glycosites Within Human Plasma Glycoproteins for Cancer Biomarker Discovery. In: Kohler, J., Patrie, S. (eds) Mass Spectrometry of Glycoproteins. Methods in Molecular Biology, vol 951. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-146-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-146-2_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-145-5

  • Online ISBN: 978-1-62703-146-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics