Skip to main content

Surface Treatments for Microfluidic Biocompatibility

  • Protocol
  • First Online:
Microfluidic Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 949))

Abstract

Microfluidic systems allow small volumes of liquids to be manipulated, either by being passed through channels or moved around as liquid droplets. Such systems have been developed to separate, purify, analyze, and deliver molecules to reaction zones. Although volumes are small, reaction rates, catalysis, mixing, and heat transfer can be high, enabling the accurate sensing of tiny quantities of agents and the synthesis of novel products. The incorporation of multiple components, such as pumps, valves, mixers, and heaters, onto a single microfluidic platform has brought about the field of lab-on-a-chip devices or micro total analysis systems (μTAS). Although used in the research laboratory for numerous years, few of these devices have made it into the commercial market, due to their complexity of fabrication and limited choice of material. As the dimensions of these systems become smaller, interfacial interactions begin to dominate in terms of device performance. Appropriate selection of bulk materials, or the application of surface coatings, can allow control over surface properties, such as the adsorption of (bio)molecules. Here we review current microfluidic technology in terms of biocompatibility issues, examining the use of modification strategies to improve device longevity and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berg A, Olthius W, Bergveld P (2000) Micro total analysis systems. Kluwer Academics, Dordrecht

    Google Scholar 

  2. Fu AY, Spence C, Scherer FH, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  CAS  Google Scholar 

  3. Grafton MM, Zordan MD, Chuang HS, Rajdev P, Reece LM, Irazoqui PP, Wereley ST, Byrnes R, Todd P, Leary JF (2010) Portable microfluidic cytometer for whole blood cell analysis (microfluidics, biomems and medical microsystems VIII). Proc SPIE Int Soc Opt Eng 7593:75930M–75930M-8

    Google Scholar 

  4. Khan MS, Thouas G, Shen W, Whyte G, Garnier G (2010) Paper diagnostic for instantaneous blood typing. Anal Chem 82(10):4158–4164

    Article  CAS  Google Scholar 

  5. Effenhauser CS, Bruin JM, Paulus A, Ehrat M (1997) Integrated capillary electrophoresis on flexible silicone microdevices: analysis of DNA restriction fragments and detection of single DNA molecules on microchips. Anal Chem 69:3451–3457

    Article  CAS  Google Scholar 

  6. Mao H, Yang T, Cremer PS (2002) Design and characterization of immobilized enzymes in microfluidic systems. Anal Chem 74:379–385

    Article  CAS  Google Scholar 

  7. Chen SH, Sung WC, Lee GB, Lin ZY, Chen PW, Liao PC (2001) A disposable poly(methylmethacrylate)-based microfluidic module for protein identification by nanoelectrospray ionization-tandem mass spectrometry. Electrophoresis 22:3972–3977

    Article  CAS  Google Scholar 

  8. Blow N (2007) Microfluidics: in search of a killer application. Nat Methods 4:655–670

    Google Scholar 

  9. Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540

    Article  CAS  Google Scholar 

  10. Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984

    Article  CAS  Google Scholar 

  11. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  CAS  Google Scholar 

  12. Voskercian G, Shive MS, Shawgo RS, von Recum H, Anderson JM, Cima MJ, Langer R (2003) Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials 24:1959–1967

    Article  Google Scholar 

  13. Christensen TB, Pedersen CM, Goenahl KG, Jensen TG, Sekulovic A, Bang DD, Wolff A (2007) PCR biocompatibility of lab-on-a-chip MEMS materials. J Micromech Microeng 17:1527–1532

    Article  CAS  Google Scholar 

  14. Khanfer K, Duprey A, Schlicht M, Berguer R (2009) Effects of strain rate, mixing ratio, and stress–strain definition on the mechanical on the mechanical behaviour of the polydimethylsiloxane (PDMS) material as related to its biological applications. Biomed Microdevices 11(2):503–508

    Article  Google Scholar 

  15. Roman GT, Hlaus T, Bass KJ, Seelhammer TG, Culbertson CT (2005) Sol–gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophobic channel wall characteristics. Anal Chem 77:1414–1422

    Article  CAS  Google Scholar 

  16. Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  CAS  Google Scholar 

  17. Rolland JP, Van Dam RM, Schorzman DA, Quake SR, DeSimone JM (2004) Solvent-resistant photocurable “Liquid Teflon” for microfluidic device fabrication. J Am Chem Soc 126:2322–2323

    Article  CAS  Google Scholar 

  18. Fujii T, Sando Y, Higashino K, Fujii Y (2003) A plug and play microfluidic device. Lab Chip 3:193–197

    Article  CAS  Google Scholar 

  19. Ratner DM, Murphy ER, Jhunjhunwala M, Snyder DA, Jensen KF, Seeberger PH (2005) Microreactor-based reaction optimization in organic chemistry—glycosylation as a challenge. Chem Comm 10:578–580

    Google Scholar 

  20. Kikutani Y, Hibara A, Uchiyama K, Hisamoto H, Tokeshia M, Kitamori T (2002) Pile-up glass microreactor. Lab Chip 2:193–196

    Article  CAS  Google Scholar 

  21. Zhang ZL, Crozatier C, Le Berre M, Chen Y (2005) In situ bio-functionalization and cell adhesion in microfluidic devices. Microelectron Eng 78–79:556–562

    Article  Google Scholar 

  22. Sheikh S, Chih-Chieh SJ, Blaszykowski C, Thompson M (2010) New oligoethylene glycol linkers for the surface modification of an ultra-high frequency acoustic wave biosensor. Chem Sci 1:271–275

    Article  CAS  Google Scholar 

  23. Aramaki K, Shimura T (2004) Self-assembled monolayers of carboxylate ions on passivated iron for preventing passive film breakdown. Corrosion Sci 46:313–328

    Article  CAS  Google Scholar 

  24. Zamborini FP, Crooks RM (1998) Corrosion passivation of gold by N-alkanethiol self assembled monolayers: effect of chain length and End group. Langmuir 14:32793286

    Google Scholar 

  25. Angelova N, Hunkeler D (1999) Rationalizing the design of polymeric biomaterials. Trends Biotechnol 17:409–421

    Article  CAS  Google Scholar 

  26. Sofia S, McCarthy MB, Gronowicz G, Kaplan DL (2001) Functionalized silk-based biomaterials for bone formation. J Biomed Mater Res 54:139–148

    Article  CAS  Google Scholar 

  27. Sun X, Liu J, Lee ML (2008) Surface modification of polymer microfluidic devices using in-channel atom transfer radical polymerization. Electrophoresis 29(13):2760–2767

    Article  CAS  Google Scholar 

  28. Wang Y, Pai J-H, Lai H-H, Sims CE, Bachmann M, Li GP, Allbritton NL (2007) Surface graft polymerization of SU-8 for Bio-MEMS applications. J Micromech Microeng 17:1371–1380

    Article  CAS  Google Scholar 

  29. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82:364–366

    Article  CAS  Google Scholar 

  30. Sui G, Wang J, Lee CC, Lu W, Lee SP, Leyton JV, Wu AM, Tseng HR (2006) Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Anal Chem 78(15):5543–5551

    Article  CAS  Google Scholar 

  31. Ren XQ, Bachman M, Sims C, Li GP, Allbritton N (2001) Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J Chromatogr B 762:117–125

    Article  CAS  Google Scholar 

  32. Lee J, Kim MJ, Lee HH (2006) Surface modification of poly(dimethylsiloxane) for retarding swelling in organic solvents. Langmuir 22:6544–6554

    Google Scholar 

  33. Rhodes NP, Wilson DJ, Williams RL (2007) The effect of gas plasma modification on platelet and contact phase activation processes. Biomaterials 28(31):4561–4570

    Article  CAS  Google Scholar 

  34. Kyriakides TR, Leach KJ, Hoffman AS, Ratner BD, Bornstein P (1999) Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proc Natl Acad Sci 96:4449–4454

    Article  CAS  Google Scholar 

  35. Klages C-P, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47(1–2):49–56

    Article  CAS  Google Scholar 

  36. Zelzer M, Majani R, Bradley JW, Rose FRAJ, Davies MC, Alexander MR (2008) Investigation of cell-surface interactions using chemical gradients formed from plasma polymers. Biomaterials 29(2):172–184

    Article  CAS  Google Scholar 

  37. Lii J, Hsu W-J, Parsa H, Das A, Rouse R, Sia SK (2008) Real-time microfluidic system for studying mammalian cells in 3D microenvironments. Anal Chem 80:3640–3647

    Article  CAS  Google Scholar 

  38. Cabodi M, Choi N, Gleghorn J, Lee C, Bonassar L, Strook AD (2005) A microfluidic biomaterial. J Am Chem Soc 127:13788–13789

    Article  CAS  Google Scholar 

  39. Li R, Altreuter D, Gentile F (1996) Transport characterization of hydrogel matrices for cell encapsulation. Biotechnol Bioeng 50:365–373

    Article  CAS  Google Scholar 

  40. Gourley PL, Hendricks JK, McDonald AE, Copeland RG, Yaffe MP, Naviaux RK (2007) Reactive biomolecular divergence in genetically altered yeast cells and isolated mitochondria as measured by biocavity laser spectroscopy: rapid diagnostic method for studying cellular responses to stress and disease. J Biomed Optics 12(5) (Article Number: 054003)

    Google Scholar 

  41. Roach P, Eglin D, Rhode K, Farrar D, Perry CC (2006) Modern biomaterials: a review: bulk properties and implications of surface modifications. J Mater Sci Mater Med 18(7):1263–1277

    Article  Google Scholar 

  42. Cox JD, Curry MS, Skirboll SK, Gourley PL, Sasaki DY (2002) Surface passivation of a microfluidic device to glial cell adhesion: a comparison of hydrophobic and hydrophilic SAM coatings. Biomaterials 23(3):929–935

    Article  CAS  Google Scholar 

  43. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128(12):3939–3945

    Article  CAS  Google Scholar 

  44. Geerken MJ, van Zanten TS, Lammertink RGH, Bornemann Z, Nijdam W, van Rijn CJM, Wessling M (2004) Chemical and thermal stability of alkylsilane based coatings for membrane emulsification. Adv Eng Mater 6:749–754

    Article  CAS  Google Scholar 

  45. Allara DL, Parikh AN, Rondelez F (1995) Evidence for a unique chain organisation in long chain silane monolayers deposited on two widely different solid substrates. Langmuir 11:2357–2360

    Article  CAS  Google Scholar 

  46. Harris JM (1992) Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. Plenum Press, New York

    Google Scholar 

  47. Gingelll D, Owens N, Hodge P, Nicholas CV, Odell R (1994) Adsorption of a novel fluorescent derivative of a poly(ethylene oxide)/poly(butylenes oxide) block-co-polymer on octadecyl glass studied by total internal reflection fluorescence and interferometry. J Biomed Mater Res 28:505–513

    Article  Google Scholar 

  48. Popat KC, Johnson RW, Desai TA (2003) Characterisation of vapour deposited poly(ethylene glycol) films on silicon surfaces for surface modification of microfluidic systems. J Vac Sci Technol B 21:645–654

    Article  CAS  Google Scholar 

  49. Lahann J, Balcells M, Lu H, Rodon T, Jensen KF, Langer R (2003) Reactive polymer coatings: a first step toward surface engineering of microfluidic devices. Anal Chem 75:2117–2122

    Article  CAS  Google Scholar 

  50. Harbers GM, Emoto K, Greef C, Metzger SW, Woodward HN, Mascali JJ, Grainger DW, Lochhead MJ (2007) Functionalised poly(ethylene glycol)-based bioassay surface chemistry that facilitates bioimmobilization and inhibits non-specific protein, bacterial and mammalian cell adhesion. Chem Mater 19:4405–4414

    Article  CAS  Google Scholar 

  51. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17:6336–6343

    Article  CAS  Google Scholar 

  52. Kim P, Jeong HE, Khademhosseini A, Suh KY (2006) Fabrication of non-biofouling polyethylene glycol nicro and nanochannels by ultraviolet-assisted irreversible sealing. Lab Chip 6(11):1432–1437

    Article  CAS  Google Scholar 

  53. Cassie A, Baxter S (1944) Wettability of porous surfaces. Trans Faraday Soc 40:546–551

    Article  CAS  Google Scholar 

  54. Koc Y, de Mello AJ, McHale G, Newton MI, Roach P, Shirtcliffe NJ (2008) Nanoscale superhydrohobicity: suppression of protein adsorption and promotion of flow induced detachment. Lab Chip 8:582–586

    Article  CAS  Google Scholar 

  55. Alexander C, Shakesheff KM (2006) Responsive polymers at the biology/materials science interface. Adv Mater 18(24):3321–3328

    Article  CAS  Google Scholar 

  56. Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regnerative tissues and organs. J Control Release 101(1–3):69–84

    Article  CAS  Google Scholar 

  57. Allen LT, Tosetto M, Miller IS, O’Connor DP, Penney SC, Lynch I, Keenan AK, Pennington SR, Dawson KA, Gallagher WM (2006) Surface-induced changes in protein adsorption and implications for cellular phenotypic responses to surface interaction. Biomaterials 27(16):3096–3108

    Article  CAS  Google Scholar 

  58. Nath N, Hyun J, Ma H, Chilkoti A (2004) Surface engineering strategies for control of protein and cell interactions. Surf Sci 570(1–2):98–110

    Article  CAS  Google Scholar 

  59. Sung WJ, Bae YH (2003) A glucose oxidase electrode based on polypyrrole with polyanion/PEG/enzyme conjugate dopant. Biosens Bioelectron 18(10):1231–1239

    Article  CAS  Google Scholar 

  60. Fuentes M, Pessala BCC, Maquiese JV, Ortiz C, Segura RL, Palomo JM, Abian O, Torres R, Mateo C, Fernández-Lafuente R, Guisán JM (2004) Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran. Biotechnol Prog 20(4):1134–1139

    Article  CAS  Google Scholar 

  61. Kikuchi A, Okano T (2002) Intelligent thermoresponsive polymeric stationary phases for aqueous chromatography of biological compounds. Prog Polym Sci 27(6):1165–1193

    Article  CAS  Google Scholar 

  62. Huber DL, Manginell RP, Samara MA, Kim B-I, Bunker BC (2003) Programmed adsorption and release of proteins in a microfluidic device. Science 301:352–354

    Article  CAS  Google Scholar 

  63. Edahiro J, Sumaru K, Tada Y, Ohi K, Takagi T, Kameda M, Shinbo T, Kanamori T, Yoshimi Y (2005) In situ control of cell adhesion using photoresponsive culture surface. Biomacromolecules 6(2):970–974

    Article  CAS  Google Scholar 

  64. Yamada N, Okano T, Sakai H, Karikusa F, Sawasaki Y, Sakurai Y (1990) Thermoresponsive polymeric surfaces: control of attachment and detachment of cultured cells. Makromol Chem Rapid Commun 11(11):571–576

    Article  CAS  Google Scholar 

  65. Zhu X, De Graaf J, Winnik FM, Leckband D (2004) Tuning the interfacial properties of grafted chains with a pH switch. Langmuir 20(4):1459–1465

    Article  CAS  Google Scholar 

  66. Wang J, Jiang M, Mukherjee B (2000) On demand electrochemical release of DNA from gold surfaces. Bioelectrochemistry 52(1):111–114

    Article  CAS  Google Scholar 

  67. Kwok CS, Mourad PD, Crum LA, Ratner BD (2001) Self-assembled molecular structures as ultrasonically-responsive barrier membranes for pulsatile drug delivery. J Biomed Mater Res 57(2):151–164

    Article  CAS  Google Scholar 

  68. Ainslie KM, Sharma G, Dyer MA, Grims CA, Pishko MV (2005) Attenuation of protein adsorption on static and oscillating magnetostrictive nanowires. Nano Lett 5(9):1852–1856

    Article  CAS  Google Scholar 

  69. Kushida A, Yamoto M, Konno C, Kikuchi A, Sakurai Y, Okano T (1999) Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J Biomed Mater Res 45(4):355–362

    Article  CAS  Google Scholar 

  70. Canavan HE, Cheng XH, Graham DJ, Ratner BD, Castner DG (2005) Surface characterisation of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir 21(5):1949–1955

    Article  CAS  Google Scholar 

  71. Mart RJ, Osborne RD, Stevens MM, Ulijn RV (2006) Peptide-based stimuli-responsive biomaterials. Soft Matter 2(10):822–835

    Article  CAS  Google Scholar 

  72. Murthy N, Campbell J, Fausto N, Hoffmann AS, Stayton PS (2003) Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem 14(2):412–419

    Article  CAS  Google Scholar 

  73. Aurenheimer J, Dahmen C, Hersel U, Bausch A, Kessler H (2005) Photoswitched cell adhesion on surfaces with RGD peptides. J Am Chem Soc 127(46):16107–16110

    Article  Google Scholar 

  74. Schrott W, Pribyl M, Stepanek J, Snita D (2008) Electro-osmotic characteristics of polystyrene microchips—experiments and modelling. Microelectron Eng 85(5–6):1100–1103

    Article  CAS  Google Scholar 

  75. Horvarth J, Dolnik V (2001) Wall coatings in capillary electrophoresis. Electrophoresis 22:644–645

    Article  Google Scholar 

  76. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

    Article  Google Scholar 

  77. Lvov Y, Decher G, Mohwald H (1993) Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine). Langmuir 9:481–486

    Article  CAS  Google Scholar 

  78. Hammond PT, Whitesides GM (1995) Formation of polymer microstructures by selective deposition of polyion multilayers using patterned self-assembled monolayers as a template. Macromolecules 1995(28):7569–7571

    Article  Google Scholar 

  79. Lin QK, Van JJ, Qiu FY, Song XX, Fu GS, Ji JA (2011) Heparin/collagen multilayer as a thromboresistant and endothelial favorable coating for intravascular stent. J Biomed Mater Res A 96A(1):132–141

    Article  CAS  Google Scholar 

  80. King KR, Wang CCJ, Kaasempur-Mofrad MR, Vacanti JP, Borenstein JT (2004) Biodegradable microfluidics. Adv Mater 16:2007–2012

    Article  CAS  Google Scholar 

  81. Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602–606

    Article  CAS  Google Scholar 

  82. Sundback CA, Shyu JY, Wang Y, Faquin WC, Langer RS, Vacanti JP, Hadlock TA (2005) Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials 26:5454–5464

    Article  CAS  Google Scholar 

  83. Daniel KD, Kim GY, Vassiliou CC, Jalali-Yazdi F, Langer R, Cima MJ (2007) Multi-reservoir device for detecting a soluble cancer biomarker. Lab Chip 7(10):1288–1293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Endowment for Science, Technology and the Arts (NESTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Roach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media,LLC

About this protocol

Cite this protocol

Shirtcliffe, N.J., Toon, R., Roach, P. (2013). Surface Treatments for Microfluidic Biocompatibility. In: Jenkins, G., Mansfield, C. (eds) Microfluidic Diagnostics. Methods in Molecular Biology, vol 949. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-134-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-134-9_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-133-2

  • Online ISBN: 978-1-62703-134-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics