Skip to main content

What Parameters to Consider and Which Software Tools to Use for Target Selection and Molecular Design of Small Interfering RNAs

  • Protocol
  • First Online:
siRNA Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 942))

Abstract

The design of small gene silencing RNAs with a high probability of being efficient still has some elements of an art, especially when the lowest concentration of small molecules needs to be utilized. The design of highly target-specific small interfering RNAs or short hairpin RNAs is even a greater challenging task. Some logical schemes and software tools that can be used for simplifying both tasks are presented here. In addition, sequence motifs and sequence composition biases of small interfering RNAs that have to be avoided because of specificity concerns are also detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van Rij RP, Andino R (2006) The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 24:186–193

    Article  Google Scholar 

  2. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  CAS  Google Scholar 

  3. Paddison PJ et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  Google Scholar 

  4. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  Google Scholar 

  5. Matranga C et al (2005) Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123:607–620

    Article  CAS  Google Scholar 

  6. Rand TA et al (2005) Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123:621–629

    Article  CAS  Google Scholar 

  7. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32

    Article  CAS  Google Scholar 

  8. Höck J, Meister G (2008) The Argonaute protein family. Genome Biol 9:210–210

    Article  Google Scholar 

  9. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  CAS  Google Scholar 

  10. Carmell MA et al (2002) The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis. Genes Dev 16:2733–2742

    Article  CAS  Google Scholar 

  11. Sasaki T et al (2003) Identification of eight members of the Argonaute family in the human genome small star, filled. Genomics 82:323–330

    Article  CAS  Google Scholar 

  12. Meister G et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  Google Scholar 

  13. Witold F (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20

    Article  Google Scholar 

  14. Liu J, Carmell MA et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  Google Scholar 

  15. Schwarz DS et al (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199–208

    Article  CAS  Google Scholar 

  16. Khvorova A et al (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216

    Article  CAS  Google Scholar 

  17. Reynolds A et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  Google Scholar 

  18. Ui-Tei K et al (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  Google Scholar 

  19. Chalk AM et al (2004) Improved and automated prediction of effective siRNA. Biochem Biophys Res Commun 319:264–274

    Article  CAS  Google Scholar 

  20. Jagla B et al (2005) Sequence characteristics of functional siRNAs. RNA 11:864–872

    Article  CAS  Google Scholar 

  21. Saetrom P (2004) Predicting the efficacy of short oligonucleotides in antisense and RNAi experiments with boosted genetic programming. Bioinformatics 20:3055–3063

    Article  CAS  Google Scholar 

  22. Teramoto R et al (2005) Prediction of siRNA functionality using generalized string kernel and support vector machine. FEBS Lett 579:2878–2882

    Article  CAS  Google Scholar 

  23. Jia P et al (2006) Demonstration of two novel methods for predicting functional siRNA efficiency. BMC Bioinform 7:271

    Article  Google Scholar 

  24. Huesken D et al (2005) Design of a genome-wide siRNA library using an artificial neural network. Nat Biotechnol 23:995–1001

    Article  CAS  Google Scholar 

  25. Matveeva OV et al (2010) Optimization of duplex stability and terminal asymmetry for shRNA design. PLoS One 5:e10180

    Article  Google Scholar 

  26. Ge G et al (2005) Prediction of siRNA knockdown efficiency using artificial neural network models. Biochem Biophys Res Commun 336:723–728

    Article  CAS  Google Scholar 

  27. Takasaki S, Kawamura Y, Konagaya A (2006) Selecting effective siRNA sequences by using radial basis function network and decision tree learning. BMC Bioinform 7(Suppl 5):S22

    Article  Google Scholar 

  28. Ichihara M et al (2007) Thermodynamic instability of siRNA duplex is a prerequisite for dependable prediction of siRNA activities. Nucleic Acids Res 35:e123

    Article  Google Scholar 

  29. Vert J-P et al (2006) An accurate and interpretable model for siRNA efficacy prediction. BMC Bioinform 7:520

    Article  Google Scholar 

  30. Matveeva O et al (2007) Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res 35:e63

    Article  Google Scholar 

  31. Ladunga I (2007) More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature. Nucleic Acids Res 35:433–440

    Article  CAS  Google Scholar 

  32. Peek AS, Behlke MA (2007) Design of active small interfering RNAs. Curr Opin Mol Ther 9:110–118

    CAS  Google Scholar 

  33. Lu ZJ, Mathews DH (2008) Efficient siRNA selection using hybridization thermodynamics. Nucleic Acids Res 36:640–647

    Article  CAS  Google Scholar 

  34. Wang X et al (2009) Selection of hyperfunctional siRNAs with improved potency and specificity. Nucleic Acids Res 37:e152

    Article  Google Scholar 

  35. Jiang P et al (2007) RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching. Comput Methods Programs Biomed 87:230–238

    Article  Google Scholar 

  36. Takasaki S (2009) Methods for selecting effective siRNA sequences by using statistical and clustering techniques. Methods Mol Biol 487:1–39

    Article  CAS  Google Scholar 

  37. Davis J, Goadrich M (2006) The relationship between Precision-Recall and ROC curves. ACM Press, New York, NY, pp 233–240

    Google Scholar 

  38. Saetrom P, Snøve O Jr (2004) A comparison of siRNA efficacy predictors. Biochem Biophys Res Commun 321:247–253

    Article  CAS  Google Scholar 

  39. Shabalina SA, Spiridonov AN, Ogurtsov AY (2006) Computational models with thermodynamic and composition features improve siRNA design. BMC Bioinform 7:65

    Article  Google Scholar 

  40. Fellmann C et al (2011) Functional identification of optimized RNAi triggers using a massively parallel sensor assay. Mol Cell 41:733–746

    Article  CAS  Google Scholar 

  41. Silva JM et al (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319:617–620

    Article  CAS  Google Scholar 

  42. Schlabach M et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319:620–624

    Article  CAS  Google Scholar 

  43. Siolas D et al (2005) Synthetic shRNAs as potent RNAi triggers. Nat Biotechnol 23:227–231

    Article  CAS  Google Scholar 

  44. Boudreau RL, Monteys AM, Davidson BL (2008) Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA 14:1834–1844

    Article  CAS  Google Scholar 

  45. Amarzguioui M, Prydz H (2004) An algorithm for selection of functional siRNA sequences. Biochem Biophys Res Commun 316:1050–1058

    Article  CAS  Google Scholar 

  46. Walton SP, Wu M, Gredell JA, Chan C (2010) Designing highly active siRNAs for therapeutic applications. FEBS J 277:4806–4813

    Article  CAS  Google Scholar 

  47. Gong W et al (2006) Integrated siRNA design based on surveying of features associated with high RNAi effectiveness. BMC Bioinform 7:516

    Article  Google Scholar 

  48. Takasaki S, Kotani S, Konagaya A (2004) An effective method for selecting siRNA target sequences in mammalian cells. Cell Cycle 3:790–795

    Article  CAS  Google Scholar 

  49. Holen T (2006) Efficient prediction of siRNAs with siRNA rules 1.0: an open-source JAVA approach to siRNA algorithms. RNA 12:1620–1625

    Article  CAS  Google Scholar 

  50. Takasaki S (2009) Selecting effective siRNA target sequences by using Bayes’ theorem. Comput Biol Chem 33:368–372

    Article  CAS  Google Scholar 

  51. Peek AS (2007) Improving model predictions for RNA interference activities that use support vector machine regression by combining and filtering features. BMC Bioinform 8:182

    Article  Google Scholar 

  52. Patzel V et al (2005) Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency. Nat Biotechnol 23:1440–1444

    Article  CAS  Google Scholar 

  53. Köberle C, Kaufmann SHE, Patzel V (2006) Selecting effective siRNAs based on guide RNA structure. Nat Protoc 1:1832–1839

    Article  Google Scholar 

  54. Bohula EA et al (2003) The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript. J Biol Chem 278:15991–15997

    Article  CAS  Google Scholar 

  55. Yoshinari K, Miyagishi M, Taira K (2004) Effects on RNAi of the tight structure, sequence and position of the targeted region. Nucleic Acids Res 32:691–699

    Article  CAS  Google Scholar 

  56. Heale BS et al (2005) siRNA target site secondary structure predictions using local stable substructures. Nucleic Acids Res 33:e30

    Article  Google Scholar 

  57. Brown KM, Chu C-Y, Rana TM (2005) Target accessibility dictates the potency of human RISC. Nat Struct Mol Biol 12:469–470

    Article  CAS  Google Scholar 

  58. Overhoff M et al (2005) Local RNA target structure influences siRNA efficacy: a systematic global analysis. J Mol Biol 348:871–881

    Article  CAS  Google Scholar 

  59. Schubert S et al (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J Mol Biol 348:883–893

    Article  CAS  Google Scholar 

  60. Shao Y et al (2007) Effect of target secondary structure on RNAi efficiency. RNA 13:1631–1640

    Article  CAS  Google Scholar 

  61. Tafer H et al (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26:578–583

    Article  CAS  Google Scholar 

  62. Alsheddi T et al (2008) siRNAs with high specificity to the target: a systematic design by CRM algorithm. Mol Biol (Mosk) 42:163–171

    Article  CAS  Google Scholar 

  63. Tilesi F et al (2009) Design and validation of siRNAs and shRNAs. Curr Opin Mol Ther 11:156–164

    CAS  Google Scholar 

  64. Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5(prime)-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465:818–822

    Article  CAS  Google Scholar 

  65. Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  66. Amarzguioui M et al (2003) Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res 31:589–595

    Article  CAS  Google Scholar 

  67. Jackson AL et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  Google Scholar 

  68. Jackson AL et al (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  CAS  Google Scholar 

  69. Birmingham A et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Meth 3:199–204

    Article  CAS  Google Scholar 

  70. Echeverri CJ et al (2006) Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Meth 3:777–779

    Article  CAS  Google Scholar 

  71. Vankoningsloo S et al (2008) Gene expression silencing with “specific” small interfering RNA goes beyond specificity—a study of key parameters to take into account in the onset of small interfering RNA off-target effects. FEBS J 275:2738–2753

    Article  CAS  Google Scholar 

  72. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18:504–511

    Article  CAS  Google Scholar 

  73. Lin X et al (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    Article  CAS  Google Scholar 

  74. Anderson EM et al (2008) Experimental validation of the importance of seed complement frequency to siRNA specificity. RNA 14:853–861

    Article  CAS  Google Scholar 

  75. Grimson A et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    Article  CAS  Google Scholar 

  76. Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348:1079–1090

    Article  CAS  Google Scholar 

  77. Hornung V et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  Google Scholar 

  78. Judge AD et al (2005) Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat Biotechnol 23:457–462

    Article  CAS  Google Scholar 

  79. Mysara M et al (2011) MysiRNA-designer: a workflow for efficient siRNA design. PLoS One 6:e25642

    Article  CAS  Google Scholar 

  80. Armant MA, Fenton MJ (2002) Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 3:reviews3011.1–reviews3011.6

    Article  Google Scholar 

  81. Akira S, Hemmi H (2003) Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 85:85–95

    Article  CAS  Google Scholar 

  82. Heil F et al (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  CAS  Google Scholar 

  83. Sioud M (2006) Single-stranded small interfering RNA are more immunostimulatory than their double-stranded counterparts: a central role for 2′-hydroxyl uridines in immune responses. Eur J Immunol 36:1222–1230

    Article  CAS  Google Scholar 

  84. Goodchild A et al (2009) Sequence determinants of innate immune activation by short interfering RNAs. BMC Immunol 10:40

    Article  Google Scholar 

  85. Forsbach A et al (2008) Identification of RNA sequence motifs stimulating sequence-specific TLR8-dependent immune responses. J Immunol 180:3729–3738

    CAS  Google Scholar 

  86. Gantier MP et al (2008) TLR7 is involved in sequence-specific sensing of single-stranded RNAs in human macrophages. J Immunol 180:2117–2124

    CAS  Google Scholar 

  87. Stewart CR et al (2011) Immunostimulatory motifs enhance antiviral siRNAs targeting highly pathogenic avian influenza H5N1. PLoS One 6:e21552

    Article  CAS  Google Scholar 

  88. Sugiyama T et al (2005) CpG RNA: identification of novel single-stranded RNA that stimulates human CD14+CD11c+ monocytes. J Immunol 174:2273–2279

    CAS  Google Scholar 

  89. Fedorov Y et al (2006) Off-target effects by siRNA can induce toxic phenotype. RNA 12:1188–1196

    Article  CAS  Google Scholar 

  90. Birmingham A et al (2007) A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2:2068–2078

    Article  CAS  Google Scholar 

  91. Dahlgren C et al (2008) Analysis of siRNA specificity on targets with double-nucleotide mismatches. Nucleic Acids Res 36:e53

    Article  Google Scholar 

  92. Alemán LM, Doench J, Sharp PA (2007) Comparison of siRNA-induced off-target RNA and protein effects. RNA 13:385–395

    Article  Google Scholar 

Download references

Acknowledgement

The author is very grateful to John Atkins for careful reading of this manuscript and very constructive comments. The work was supported in part by Fred Hutchinson Cancer Center grant DK056465 to animal core facility and by Russian Ministry of Science and Education grant 11.G34.31.0034 to Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Matveeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Matveeva, O. (2013). What Parameters to Consider and Which Software Tools to Use for Target Selection and Molecular Design of Small Interfering RNAs. In: Taxman, D. (eds) siRNA Design. Methods in Molecular Biology, vol 942. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-119-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-119-6_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-118-9

  • Online ISBN: 978-1-62703-119-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics