Skip to main content

In Vitro Transcription of Modified RNAs

  • Protocol
  • First Online:
Recombinant and In Vitro RNA Synthesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 941))

Abstract

RNAs containing a variety of terminal and internal modifications can be produced using bacteriophage polymerases often with a few simple adjustments to standard transcription protocols. RNAs containing a single phosphate or a cap structure at their 5′ ends can readily be generated either co-transcriptionally or through enzymatic treatments of transcription products. Likewise, a variety of modified bases, including fluorescent or biotinylated species, can be effectively incorporated co-transcriptionally. The key to effective co-transcriptional incorporation lies in determining the efficiency of incorporation of modified base relative to its standard counterpart. Finally, an approach to place a poly(A) tail at the exact 3′ end of a desired transcription product is presented. Collectively, these protocols allow one to synthesize RNAs with a variety of modifications to serve as versatile molecules to analyze biological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melton DA, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056

    Article  PubMed  CAS  Google Scholar 

  2. Milligan JF, Groebe DR, Witherell GW, Uhlenbeck OC (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  PubMed  CAS  Google Scholar 

  3. Olliver L, Boyd CD (1998) In vitro translation of messenger RNA in a rabbit reticulocyte lysate cell-free system. Methods Mol Biol 86:221–227

    PubMed  CAS  Google Scholar 

  4. Flaherty SM, Fortes P, Izaurralde E, Mattaj IW, Gilmartin GM (1997) Participation of the nuclear cap binding complex in pre-mRNA 3′ processing. Proc Natl Acad Sci USA 94:11893–11898

    Article  PubMed  CAS  Google Scholar 

  5. Sokoloski KJ, Wilusz J, Wilusz CJ (2008) The preparation and applications of cytoplasmic extracts from mammalian cells for studying aspects of mRNA decay. Methods Enzymol 448:139–163

    Article  PubMed  CAS  Google Scholar 

  6. Yunus MA, Chung LM, Chaudhry Y, Bailey D, Goodfellow I (2010) Development of an optimized RNA-based murine norovirus reverse genetics system. J Virol Methods 169:112–118

    Article  PubMed  CAS  Google Scholar 

  7. Shuman S, Moss B (1990) Purification and use of vaccinia virus messenger RNA capping enzyme. Methods Enzymol 181:170–180

    Article  PubMed  CAS  Google Scholar 

  8. Solomatin S, Herschlag D (2009) Methods of site-specific labeling of RNA with fluorescent dyes. Methods Enzymol 469:47–68

    Article  PubMed  CAS  Google Scholar 

  9. Mukherjee D, Fritz DT, Kilpatrick WJ, Gao M, Wilusz J (2004) Analysis of RNA exonucleolytic activities in cellular extracts. Methods Mol Biol 257:193–212

    PubMed  CAS  Google Scholar 

  10. Srivatsan SG, Tor Y (2007) Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 129:2044–2053

    Article  PubMed  CAS  Google Scholar 

  11. Vaught JD, Dewey T, Eaton BE (2004) T7 RNA polymerase transcription with 5-position modified UTP derivates. J Am Chem Soc 126:11231–11237

    Article  PubMed  CAS  Google Scholar 

  12. Chelliserrykattil J, Ellington AD (2004) Evolution of a T7 polymerase variant that transcribes 2′-O-methyl RNA. Nat Biotechnol 22:1155–1160

    Article  PubMed  CAS  Google Scholar 

  13. Chelliserrykattil J, Cai G, Ellington AD (2001) A combined in vitro/in vivo selection for polymerases with novel promoter specificities. BMC Biotechnol 22:1155–1160

    Google Scholar 

  14. Garneau NL, Sokoloski KJ, Opyrchal M, Neff CP, Wilusz CJ, Wilusz J (2008) The 3′ untranslated region of sindbis virus represses deadenylation of viral transcripts in mosquito and mammalian cells. J Virol 82:880–892

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank members of the Wilusz Laboratories for their input and helpful comments. RNA research in the laboratory is supported by grants from the NIH (R01-GM072481 and U54-AI-065357) to J.W. S.L.M. is supported by a training grant from the USDA (2010-38420-20367).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Wilusz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moon, S.L., Wilusz, J. (2013). In Vitro Transcription of Modified RNAs. In: Conn, G. (eds) Recombinant and In Vitro RNA Synthesis. Methods in Molecular Biology, vol 941. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-113-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-113-4_13

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-112-7

  • Online ISBN: 978-1-62703-113-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics