Skip to main content

Dense Module Enumeration in Biological Networks

  • Protocol
  • First Online:
Data Mining for Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 939))

  • 3670 Accesses

Abstract

Automatic discovery of functional complexes from protein interaction data is a rewarding but challenging problem. While previous approaches use approximations to extract dense modules, our approach exactly solves the problem of dense module enumeration. Furthermore, constraints from additional information sources such as gene expression and phenotype data can be integrated, so we can systematically detect dense modules with interesting profiles. Given a weighted protein interaction network, our method discovers all protein sets that satisfy a user-defined minimum density threshold. We employ a reverse search strategy, which allows us to exploit the density criterion in an efficient way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharan R, Ulitsky I, Shamir R (2007) Network-based prediction of protein function. Mol Syst Biol 3:88

    Article  PubMed  Google Scholar 

  2. Ulitsky I, Shamir R (2007) Identification of functional modules using network topology and high-throughput data. BMC Syst Biol 1:8

    Article  PubMed  Google Scholar 

  3. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4:2

    Article  PubMed  Google Scholar 

  4. Uno T (2007) An efficient algorithm for enumerating pseudo cliques. In: Proceedings of ISAAC 2007, pp. 402–414

    Google Scholar 

  5. Chen J, Yuan B (2006) Detecting functional modules in the yeast protein-protein interaction network. Bioinformatics 22(18):2283–2290

    Article  PubMed  CAS  Google Scholar 

  6. van Dongen S (2000) Graph clustering by flow simulation. PhD thesis, University of Utrecht

    Google Scholar 

  7. Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103(23):8577–8582

    Article  PubMed  CAS  Google Scholar 

  8. Everett L, Wang LS, Hannenhalli S (2006) Dense subgraph computation via stochastic search: application to detect transcriptional modules. Bioinformatics 22(14):e117–e123

    Article  PubMed  CAS  Google Scholar 

  9. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043):814–818

    Article  PubMed  CAS  Google Scholar 

  10. Spirin V, Mirny LA (2003) Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100(21):12123–12128

    Article  PubMed  CAS  Google Scholar 

  11. Zeng Z, Wang J, Zhou L, Karypis G (2006) Coherent closed quasi-clique discovery from large dense graph databases. KDD '06: proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, New York, pp 797–802

    Book  Google Scholar 

  12. Hanisch D, Zien A, Zimmer R, Lengauer T (2002) Co-clustering of biological networks and gene expression data. Bioinformatics 18(suppl 1):S145–S154

    Article  PubMed  Google Scholar 

  13. Tanay A, Sharan R, Kupiec M, Shamir R (2004) Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc Natl Acad Sci USA 101(9):2981–2986

    Article  PubMed  CAS  Google Scholar 

  14. Segal E, Wang H, Koller D (2003) Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics 19(suppl 1):i264–i271

    Article  PubMed  Google Scholar 

  15. Pei J, Jiang D, Zhang A (2005) Mining cross-graph quasi-cliques in gene expression and protein interaction data. ICDE '05: proceedings of the 21st international conference on data engineering (ICDE'05). IEEE Computer Society, Washington, DC, pp 353–354

    Google Scholar 

  16. Ideker T, Ozier O, Schwikowski B, Siegel AF (2002) Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics 18(suppl 1):S233–S240

    Article  PubMed  Google Scholar 

  17. Huang Y, Li H, Hu H, Yan X, Waterman MS, Huang H, Zhou XJ (2007) Systematic discovery of functional modules and context-specific functional annotation of human genome. Bioinformatics 23(13):i222–i229

    Article  PubMed  CAS  Google Scholar 

  18. Yan X, Mehan MR, Huang Y, Waterman MS, Yu PS, Zhou XJ (2007) A graph-based approach to systematically reconstruct human transcriptional regulatory modules. Bioinformatics 23(13):i577–i586

    Article  PubMed  CAS  Google Scholar 

  19. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, Margalit H, Armstrong J, Bairoch A, Cesareni G, Sherman D, Apweiler R (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32(suppl 1):D452–D455

    Article  PubMed  CAS  Google Scholar 

  20. Chatr-aryamontri A, Ceol A, Palazzi LM, Nardelli G, Schneider MV, Castagnoli L, Cesareni G (2007) MINT: the Molecular INTeraction database. Nucleic Acids Res 35(suppl 1):D572–D574

    Article  PubMed  CAS  Google Scholar 

  21. Bader GD, Betel D, Hogue CWV (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31(1):248–250

    Article  PubMed  CAS  Google Scholar 

  22. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101(16):6062–6067

    Article  PubMed  CAS  Google Scholar 

  23. Avis D, Fukuda K (1996) Reverse search for enumeration. Discrete Appl Math 65:21–46

    Article  Google Scholar 

  24. Han J, Kamber M (2006) Data mining: concepts and techniques of the Morgan Kaufmann series in data management systems, 2nd edn. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  25. Georgii E, Dietmann S, Uno T, Pagel P, Tsuda K (2009) Enumeration of condition-dependent dense modules in protein interaction networks. Bioinformatics 25:933–940

    Article  PubMed  CAS  Google Scholar 

  26. Georgii E, Tsuda K, Schölkopf B (2011) Multi-way set enumeration in weight tensors. Mach Learn 82:123–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Tsuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tsuda, K., Georgii, E. (2013). Dense Module Enumeration in Biological Networks. In: Mamitsuka, H., DeLisi, C., Kanehisa, M. (eds) Data Mining for Systems Biology. Methods in Molecular Biology, vol 939. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-107-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-107-3_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-106-6

  • Online ISBN: 978-1-62703-107-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics