Skip to main content

Developmental Toxicity Prediction

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 930))

Abstract

Developmental toxicity may be estimated using commercial and noncommercial software that is already available in the market and/or literature, or models may be built from scratch using both commercial and noncommercial software packages. In this chapter, commonly available software programs that can predict the developmental toxicity of chemicals are described. In addition, a method for developing qualitative structure–activity relationship (SAR) models to predict the developmental toxicity of chemicals qualitatively (yes/no prediction) and quantitative structure–activity relationship (QSAR) models to predict quantitative estimates (e.g., LOAEL) of developmental toxicants is also described in this chapter. Additional information described in this chapter include methods to predict physicochemical properties of chemicals that can be used as descriptor variables in the model building process, statistical methods that be used to build QSAR models as well as methods to validate the models that are developed. Most of the methods described in this chapter can be used to develop models for health endpoints other than developmental toxicity as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson ME, Al-Zoughool M, Croteau M et al (2010) The future of toxicity testing. J Toxicol Environ Health B Crit Rev 13(2–4):163–196

    Google Scholar 

  2. European Union Directive (2003) DIRECTIVE 2003/89/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 10 November 2003 amending Directive 2000/13/EC as regards indication of the ingredients present in foodstuffs. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2003:308:0015:0018:EN:PDF. Accessed 23 Oct 2010

  3. Doull J, Borzelleca JF, Becker R et al (2007) Framework for use of toxicity screening tools in context-based decision-making. Food Chem Toxicol 45(5):759–796

    Article  PubMed  CAS  Google Scholar 

  4. Basak SC, Bertelsen S, Grunwald GD (1995) Use of graph theoretic parameters in risk assessment of chemicals. Toxicol Lett 79:239–250

    Article  PubMed  CAS  Google Scholar 

  5. Devillers J, Chezeau A, Thybaud E et al (2002) QSAR modeling of the adult and developmental toxicity of glycols, glycol ethers and xylenes to Hydra attenuata. SAR QSAR Environ Res 13(5):555–566

    Article  PubMed  CAS  Google Scholar 

  6. Devillers J, Chezeau A, Thybaud E (2002) PLS-QSAR of the adult and developmental toxicity of chemicals to Hydra attenuata. SAR QSAR Environ Res 13(7–8):705–712

    Article  PubMed  CAS  Google Scholar 

  7. Kavlock RJ (1990) Structure-activity relationships in the developmental toxicity of substituted phenols: in vivo effects. Teratology 41(1):43–59

    Article  PubMed  CAS  Google Scholar 

  8. Richard AM, Hunter ES III (1996) Quantitative structure-activity relationships for the developmental toxicity of haloacetic acids in mammalian whole embryo culture. Teratology 53(6):352–360

    Article  PubMed  CAS  Google Scholar 

  9. Vedani A, McMasters DR, Dobler M (1991) Genetic algorithms in 3D-QSAR: predicting the toxicity of dibenzodioxins, dibenzofurans and biphenyls. ALTEX 16(1):9–14

    Google Scholar 

  10. Matthews EJ, Kruhlak NL, Cimino MC et al (2006) An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: II. Identification of genotoxicants, reprotoxicants, and carcinogens using in silico methods. Regul Toxicol Pharmacol 44(2):97–110

    Article  PubMed  CAS  Google Scholar 

  11. Matthews EJ, Kruhlak NL, Benz DR (2007) A comprehensive model for reproductive and developmental toxicity hazard identification: I. Development of a weight of evidence QSAR database. Regul Toxicol Pharmacol 47(2):115–135

    Article  PubMed  CAS  Google Scholar 

  12. Matthews EJ, Kruhlak NL, Benz RD et al (2007) A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals. Regul Toxicol Pharmacol 47(2):136–155

    Article  PubMed  CAS  Google Scholar 

  13. Cassano A, Manganaro A, Martin T et al (2010) CAESAR models for developmental toxicity. Chem Cent J 4(Suppl 1):S4

    Article  PubMed  Google Scholar 

  14. Merlot C (2008) In silico methods for early toxicity assessment. Curr Opin Drug Discov Devel 11(1):80–85

    PubMed  CAS  Google Scholar 

  15. Worth AP, Bassan A, de Brujin J et al (2007) The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods. SAR QSAR Environ Res 18:111–125

    Article  PubMed  CAS  Google Scholar 

  16. Klopman G (1984) Artificial intelligence approach to structure-activity studies. Computer automated structure evaluation of biological activity of organic molecules. J Am Chem Soc 106:7315–7321

    Article  CAS  Google Scholar 

  17. Klopman G (1992) MULTICASE: a hierarchical computer automated structure evaluation program. Quant Struct Act Relat 11:176–184

    Article  CAS  Google Scholar 

  18. Klopman G, Rosenkranz HS (1994) Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicity/mutagenicity using Multi-CASE. Mutat Res 305:33–46

    Article  PubMed  CAS  Google Scholar 

  19. Maslankiewicz L, Hulzebos EM, Vermeire TG et al (2005) Can chemical structure predict reproductive toxicity? RIVM, Bilthoven. www.rivm.nl/bibliotheek/rapporten/601200005.html. Accessed 24 Oct 2010

  20. Accelrys (2001) TOPKAT 6.1: User Guide. Oxford Molecular Ltd, Burlington, MA

    Google Scholar 

  21. Gombar VK (1998) Quantitative structure-activity relationships in toxicology: from fundamentals to application. In: Reiss C, Parvez S, Labbe G et al (eds) Advances in molecular toxicology. VSP, Utrecht

    Google Scholar 

  22. Purcell WP, Bass GE, Clayton JM (1973) Strategy of drug design: a guide to biological activity. Wiley, New York

    Google Scholar 

  23. Moudgal CJ, Venkatapathy R, Choudhury H et al (2003) Application of QSTRs in the selection of a surrogate toxicity value for a chemical of concern. Environ Sci Technol 37:5228–5235

    Article  PubMed  CAS  Google Scholar 

  24. Gombar VK, Enslein K (1996) Assessment of n-octanol/water partition coefficient: when is the assessment reliable? J Chem Inf Comput Sci 36:1127–1134

    Article  PubMed  CAS  Google Scholar 

  25. Todeschini R, Consonni V (2000) Handbook of molecular descriptors, vol 11, Methods and principles in medicinal chemistry. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  26. Ghose AK, Crippen GM (1987) Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. J Chem Inf Comput Sci 27(1):21–35

    Article  PubMed  CAS  Google Scholar 

  27. Kier LB (1986) Shape indexes of orders one and three from molecular graphs. Quant Struct Act Relat 5:1–7

    Article  CAS  Google Scholar 

  28. Kier LB, Hall LH (1999) The Kappa indices for modeling molecular shape and flexibility. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Reading

    Google Scholar 

  29. Eriksson L, Johansson E, Kettaneh-Wold N et al (1999) Introduction to multi- and megavariate data analysis using projection methods (PCA & PLS). Umetrics, Inc., Kinnelon

    Google Scholar 

  30. Eriksson L, Jaworska JS, Worth AP et al (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375

    Article  PubMed  CAS  Google Scholar 

  31. Gramatica P (2007) Principles of QSAR models validation: internal and external. QSAR Comb Sci 26:694–701

    Article  CAS  Google Scholar 

  32. Atkinson AC (1985) Plots, transformations and regression. Clarendon, Oxford

    Google Scholar 

  33. Wold S, Eriksson L (1995) Statistical validation of QSAR results. In: van de Waterbeemd H (ed) Chemometric methods in molecular design. VCH, New York

    Google Scholar 

  34. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20(4):269–276

    Article  PubMed  CAS  Google Scholar 

  35. Kozak A, Kozak R (2003) Does cross validation provide additional information in the evaluation of regression models? Can J Forest Res 33(6):976–987

    Article  Google Scholar 

  36. Reunanen J (2003) Overfitting in making comparisons between variable selection methods. J Mach Learn Res 3:1371–1382

    Google Scholar 

  37. Olsson I-M, Gottfries J, Wold S (2004) D-optimal onion designs in statistical molecular design. Chemometr Intell Lab Syst 73(1):37–46

    Article  CAS  Google Scholar 

  38. Mosier PD, Jurs PC (2002) QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. J Chem Inf Comput Sci 42(6):1460–1470

    Article  PubMed  CAS  Google Scholar 

  39. Hawkins DM, Basak SC, Mills D (2004) Assessing model fit by cross-validation. J Chem Inf Comput Sci 43(2):579–586

    Google Scholar 

  40. Matthews BW (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta 405(2):442–451

    Article  PubMed  CAS  Google Scholar 

  41. Obach RS, Baxter JG, Liston TE et al (1997) The prediction of human pharmacokinetic parameters from preclinical and in vitro metabolism data. J Pharmacol Exp Ther 283(1):46–58

    PubMed  CAS  Google Scholar 

  42. Hawkins DM (2004) The problem of overfitting. J Chem Inf Comput Sci 44(1):1–12

    Article  PubMed  CAS  Google Scholar 

Further Reading

  • http://www.scripps.edu/rc/softwaredocs/msi/cerius45/qsar/T_qsar1.html

  • http://voyagememoirs.com/pharmine/archives

  • Arena VC, Sussman NB, Mazumdar S et al (2004) Selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ Res 15(1):1–18

    Article  PubMed  CAS  Google Scholar 

  • Cronin MT, Jaworska JS, Walker JD et al (2003) Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111(10):1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Cunningham AR, Carrasquer CA, Mattison DR (2009) A categorical structure-activity relationship analysis of the developmental toxicity of antithyroid drugs. Int J Pediatr Endocrinol. doi:10.1155/2009/936154

  • Cunningham AR, Consoer DM, Iype SA et al (2009) A structure-activity relationship (SAR) analysis for the identification of environmental estrogens: the categorical-SAR (Cat-SAR) approach. In: Devillers J (ed) Endocrine disruption modeling. CRC, New York

    Google Scholar 

  • Hewitt M, Ellison CM, Enoch SJ et al (2010) Integrating (Q)SAR models, expert systems and read-across approaches for the prediction of developmental toxicity. Reprod Toxicol 30(1):147–160

    Article  PubMed  CAS  Google Scholar 

  • Knudsen TB, Martin MT, Kavlock RJ et al (2009) Profiling the activity of environmental chemicals in prenatal developmental toxicity studies using the U.S. EPA’s ToxRefDB. Reprod Toxicol 28(2):209–219

    Article  PubMed  CAS  Google Scholar 

  • Martin MT, Mendez E, Corum DG et al (2009) Profiling the reproductive toxicity of chemicals from multigeneration studies in the toxicity reference database (ToxRefDB). Toxicol Sci 110(1):181–190

    Article  PubMed  CAS  Google Scholar 

  • OECD (1995) Test No. 421: Reproduction/Developmental Toxicity Screening Test, OECD guidelines for the testing of chemicals, section 4: health effects, OECD Publishing. doi: 10.1787/9789264070967-en

    Google Scholar 

  • Saiakhov RD, Klopman G (2008) MultiCASE expert systems and the REACH initiative. Toxicol Mech Methods 18(2–3):159–175

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto K, Yamauchi A, Sasaki M et al (2007) A structural similarity evaluation by SimScore in a teratogenicity information sharing system. J Comput Chem Jpn 6(2):117–122

    Article  CAS  Google Scholar 

  • Todeschini R, Consonni V (2000) Handbook of molecular descriptors, vol 11, Methods and principles in medicinal chemistry. Wiley-VCH Verlag GmbH, Weinheim

    Book  Google Scholar 

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 22(1):69–77

    Article  CAS  Google Scholar 

  • US EPA (1991) Guidelines for developmental toxicity risk assessment. Office of Research and Development, Washington, DC, EPA/600/FR-91/001

    Google Scholar 

  • Yang CH, Valerio LG, Arvidson KB (2009) Computational toxicology approaches at the US Food and Drug Administration. Altern Lab Anim 37(5):523–531

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghuraman Venkatapathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Venkatapathy, R., Wang, N.C.Y. (2013). Developmental Toxicity Prediction. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 930. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-059-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-059-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-058-8

  • Online ISBN: 978-1-62703-059-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics