Skip to main content

Porosome: The Secretory NanoMachine in Cells

  • Protocol
  • First Online:
Cell Imaging Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 931))

Abstract

Cells synthesize and store within membranous sacs products such as hormones, growth factors, neurotransmitters, or digestive enzymes, for release on demand. As recently as just 15 years ago, it was believed that during cell secretion, membrane-bound secretory vesicles completely merge at the cell plasma membrane resulting in the diffusion of intravesicular contents to the cell exterior and the compensatory retrieval of the excess membrane by endocytosis. This explanation, however, failed to explain the generation of partially empty vesicles observed in electron micrographs following secretion. Logically therefore, in a 1993 News and Views article in the journal Nature, Prof. Erwin Neher wrote “It seems terribly wasteful that, during the release of hormones and neurotransmitters from a cell, the membrane of a vesicle should merge with the plasma membrane to be retrieved for recycling only seconds or minutes later.” The discovery of permanent secretory portals or nanomachines at the cell plasma membrane called POROSOMES, where membrane-bound secretory vesicles transiently dock and fuse to release intravesicular contents to the cell exterior, has finally resolved this conundrum. Following this discovery, the composition of the porosome, its structure and dynamics visualized with high-resolution imaging techniques atomic force and electron microscopy, and its functional reconstitution into artificial lipid membrane have provided a molecular understanding of cell secretion. In agreement, it has been demonstrated that “secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells” (Proc Natl Acad Sci U S A 100:2070–2075, 2003); that “single synaptic vesicles fuse transiently and successively without loss of identity” (Nature 423:643–647, 2003); and that “zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity” (Proc Natl Acad Sci U S A 101:6774–6779, 2004). It made no sense all these years to argue that mammalian cells possess an “all or none” mechanism of cell secretion resulting from complete vesicle merger at the cell plasma membrane, when even single-cell organisms have developed specialized and sophisticated secretory machinery, such as the secretion apparatus of Toxoplasma gondii, contractile vacuoles in paramecium, and different types of secretory structures in bacteria. The discovery of the porosome and its functional reconstitution in artificial lipid membrane, and an understanding of its morphology, composition, and dynamics, has resulted in a paradigm shift in our understanding of the secretory process in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katz B (1962) The transmission of impulses from nerve to muscle and the subcellular unit of synaptic action. Proc Roy Soc B 155:455–479

    Article  Google Scholar 

  2. Folkow B, Häggendal J, Lisander B (1967) Extent of release and elimination of noradrenalin at peripheral adrenergic nerve terminal. Acta Physiol Scand Suppl 307:1–38

    PubMed  CAS  Google Scholar 

  3. Folkow B, Häggendal J (1970) Some aspects of the quantal release of the adrenergic transmitter. In: Springer-Verlag Bayer symposium, vol II. Springer, Berlin, pp 91–97

    Google Scholar 

  4. Folkow B (1997) Transmitter release at the adrenergic nerve endings: total exocytosis or fractional release? News Physiol Sci 12:32–35

    CAS  Google Scholar 

  5. Neher E (1993) Secretion without full fusion. Nature 363:497–498

    Article  PubMed  CAS  Google Scholar 

  6. Schneider SW, Sritharan KC, Geibel JP, Oberleithner H, Jena BP (1997) Surface dynamics in living acinar cells imaged by atomic force microscopy: identification of plasma membrane structures involved in exocytosis. Proc Natl Acad Sci U S A 94:316–321

    Article  PubMed  CAS  Google Scholar 

  7. Cho S-J, Quinn AS, Stromer MH, Dash S, Cho J, Taatjes DJ, Jena BP (2002) Structure and dynamics of the fusion pore in live cells. Cell Biol Int 26:35–42

    Article  PubMed  CAS  Google Scholar 

  8. Cho S-J, Wakade A, Pappas GD, Jena BP (2002) New structure involved in transient membrane fusion and exocytosis. Ann N Y Acad Sci 971:254–256

    Article  PubMed  Google Scholar 

  9. Cho S-J, Jeftinija K, Glavaski A, Jeftinija S, Jena BP, Anderson LL (2002) Structure and dynamics of the fusion pores in live GH-secreting cells revealed using atomic force microscopy. Endocrinology 143:1144–1148

    Article  PubMed  CAS  Google Scholar 

  10. Cho WJ, Jeremic A, Rognlien KT, Zhvania MG, Lazrishvili I, Tamar B, Jena BP (2004) Structure, isolation, composition and reconstitution of the neuronal fusion pore. Cell Biol Int 28:699–708

    Article  PubMed  CAS  Google Scholar 

  11. Cho WJ, Jeremic A, Jin H, Ren G, Jena BP (2007) Neuronal fusion pore assembly requires membrane cholesterol. Cell Biol Int 31:1301–1308

    Article  PubMed  CAS  Google Scholar 

  12. Cho WJ, Ren G, Jena BP (2008) EM 3D contour maps provide protein assembly at the nanoscale within the neuronal porosome complex. J Microsc 232:106–111

    Article  PubMed  CAS  Google Scholar 

  13. Jena BP, Cho S-J, Jeremic A, Stromer MH, Abu-Hamdah R (2003) Structure and composition of the fusion pore. Biophys J 84:1–7

    Article  Google Scholar 

  14. Jeremic A, Kelly M, Cho S-J, Stromer MH, Jena BP (2003) Reconstituted fusion pore. Biophys J 85:2035–2043

    Article  PubMed  CAS  Google Scholar 

  15. Jena BP (2011) Porosome: the universal secretory portal in cells. Biomed Rev 21:1–15

    Google Scholar 

  16. Jena BP (2010) Secretory vesicles transiently dock and fuse at the porosome to discharge contents during cell secretion. Cell Biol Int 34:3–12

    Google Scholar 

  17. Jena BP (2009) Functional organization of the porosome complex and associated structures facilitating cellular secretion. Physiology 24:367–376

    Article  PubMed  CAS  Google Scholar 

  18. Jena BP (2009) Porosome: the secretory portal in cells. Biochemistry 49:4009–4018

    Article  Google Scholar 

  19. Jena BP (2008) Porosome: the universal molecular machinery for cell secretion. Mol Cells 26:517–529

    PubMed  CAS  Google Scholar 

  20. Jena BP (2007) Secretion machinery at the cell plasma membrane. Curr Opin Struct Biol 17:437–443

    Article  PubMed  CAS  Google Scholar 

  21. Jena BP (2006) Cell secretion machinery: studies using the AFM. Ultramicroscopy 106:663–669

    Article  PubMed  CAS  Google Scholar 

  22. Jena BP (2005) Cell secretion and membrane fusion. Domest Anim Endocrinol 29:145–165

    Article  PubMed  CAS  Google Scholar 

  23. Jena BP (2005) Molecular machinery and mechanism of cell secretion. Exp Biol Med 230:307–319

    CAS  Google Scholar 

  24. Jena BP (2004) Discovery of the porosome: revealing the molecular mechanism of secretion and membrane fusion in cells. J Cell Mol Med 8:1–21

    Article  PubMed  CAS  Google Scholar 

  25. Jena BP (2003) Fusion pore: structure and dynamics. J Endocrinol 176:169–174

    Article  PubMed  CAS  Google Scholar 

  26. Jena BP (2002) Fusion pores in live cells. News Physiol Sci 17:219–222

    PubMed  Google Scholar 

  27. Holden C (1997) Early peek at a cellular porthole. Science 275:485

    Article  Google Scholar 

  28. Wheatley DN (2004) A new frontier in cell biology: nano cell biology. Cell Biol Int 28:1–2

    Article  PubMed  CAS  Google Scholar 

  29. Anderson LL (2004) Discovery of a new cellular structure—the porosome: elucidation of the molecular mechanism of secretion. Cell Biol Int 28:3–5

    Article  PubMed  CAS  Google Scholar 

  30. Singer MV (2004) Legacy of a distinguished scientist: George E. Palade. Pancreatology 3:518–519

    Article  Google Scholar 

  31. Craciun C (2004) Elucidation of cell secretion: pancreas led the way. Pancreatology 4:487–489

    Article  PubMed  Google Scholar 

  32. Anderson LL (2006) Discovery of the ‘porosome’; the universal secretory machinery in cells. J Cell Mol Med 10:126–131

    Article  PubMed  CAS  Google Scholar 

  33. Hörber JKH, Miles MJ (2003) Scanning probe evolution in biology. Science 302:1002–1005

    Article  PubMed  Google Scholar 

  34. Allison DP, Doktyez MJ (2006) Cell secretion studies by force microscopy. J Cell Mol Med 10:847–856

    Article  PubMed  CAS  Google Scholar 

  35. Anderson LL (2006) Cell secretion—finally sees the light. J Cell Mol Med 10:270–272

    Article  Google Scholar 

  36. Jeftinija S (2006) The story of cell secretion: events leading to the discovery of the ‘porosome’—the universal secretory machinery in cells. J Cell Mol Med 10:273–279

    Article  PubMed  CAS  Google Scholar 

  37. Jeremic A (2008) Cell secretion: an update. J Cell Mol Med 12:1151–1154

    Article  PubMed  CAS  Google Scholar 

  38. Labhasetwar V (2007) A milestone in science: discovery of the porosome—the universal secretory machinery in cells. J Biomed Nanotechnol 3:1

    Article  Google Scholar 

  39. Leabu M (2006) Discovery of the molecular machinery and mechanisms of membrane fusion in cells. J Cell Mol Med 10:423–427

    Article  PubMed  CAS  Google Scholar 

  40. Paknikar KM, Jeremic A (2007) Discovery of the cell secretion machinery. J Biomed Nanotechnol 3:218–222

    Article  CAS  Google Scholar 

  41. Paknikar KM (2007) Landmark discoveries in intracellular transport and secretion. J Cell Mol Med 11:393–397

    Article  PubMed  CAS  Google Scholar 

  42. Siksou L, Rostaing P, Lechaire JP, Boudier T, Ohtsuka T, Fejtova A, Kao HT, Greengard P, Gundelfinger ED, Triller A, Marty S (2007) Three-dimensional architecture of presynaptic terminal cytomatrix. J Neurosci 27:6868–6877

    Article  PubMed  CAS  Google Scholar 

  43. Kelly M, Cho WJ, Jeremic A, Abu-Hamdah R, Jena BP (2004) Vesicle swelling regulates content expulsion during secretion. Cell Biol Int 28:709–716

    Article  PubMed  CAS  Google Scholar 

  44. Taraska JW, Perrais D, Ohara-Imaizumi M, Nagamatsu S, Almers W (2003) Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc Natl Acad Sci U S A 100:2070–2075

    Article  PubMed  CAS  Google Scholar 

  45. Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423:643–647

    Article  PubMed  CAS  Google Scholar 

  46. Thorn P, Fogarty KE, Parker I (2004) Zymogen granule exocytosis is characterized by long fusion pore openings and preservation of vesicle lipid identity. Proc Natl Acad Sci U S A 101:6774–6779

    Article  PubMed  CAS  Google Scholar 

  47. Kuznetsov SA, Langford GM, Weiss DG (1992) Actin-dependent organelle movement in squid axoplasm. Nature 356:722–725

    Article  PubMed  CAS  Google Scholar 

  48. Schroer TA, Sheetz MP (1991) Functions of microtubule-based motors. Annu Rev Physiol 53:629–652

    Article  PubMed  CAS  Google Scholar 

  49. Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111:2055–2066

    PubMed  CAS  Google Scholar 

  50. Rudolf R, Kögel T, Kuznetsov SA, Salm T, Sclicker O, Hellwig A, Hammer JA III, Gerdes H-H (2003) Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 116:1339–12348

    Article  PubMed  CAS  Google Scholar 

  51. Varadi A, Tsuboi T, Rutter GA (2005) Myosin Va transports dense core secretory vesicles in pancreatic MIN6 beta-cells. Mol Biol Cell 16:2670–2680

    Article  PubMed  CAS  Google Scholar 

  52. Cheney RE, O’Shea MK, Heuser JE, Coelho MV, Wolenski JS, Espreafico EM, Forscher P, Larson RE, Mooseker MS (1993) Brain myosin-V is a two-headed unconventional myosin with motor activity. Cell 75:13–23

    PubMed  CAS  Google Scholar 

  53. Reck-Peterson SL, Provance DW Jr, Mooseker MS, Mercer JA (2000) Class V myosins. Biochim Biophys Acta 1496:36–51

    Article  PubMed  CAS  Google Scholar 

  54. Hirschberg K, Miller CM, Ellenberg J, Presley JF, Siggia ED, Phair RD, Lippincott-Schwartz J (1998) Kinetic analysis of secretory protein traffic and characterization of golgi to plasma membrane transport intermediates in living cells. J Cell Biol 143:1485–1503

    Article  PubMed  CAS  Google Scholar 

  55. Rudolf R, Salm T, Rustom A, Gerdes H-H (2001) Dynamics of immature secretory granules: role of cytoskeletal elements during transport, cortical restriction, and F-actin-dependent tethering. Mol Biol Cell 12:1353–1365

    PubMed  CAS  Google Scholar 

  56. Manneville J-B, Etienne-Manneville S, Skehel P, Carter T, Ogden D, Ferenczi M (2003) Interaction of the actin cytoskeleton with microtubules regulates secretory organelle movement near the plasma membrane in human endothelial cells. J Cell Sci 116:3927–3938

    Article  PubMed  CAS  Google Scholar 

  57. Abu-Hamdah R, Cho W-J, Hörber JKH, Jena BP (2006) Secretory vesicles in live cells are not free-floating but tethered to filamentous structures: a study using photonic force microscopy. Ultramicroscopy 106:670–673

    Article  PubMed  CAS  Google Scholar 

  58. Jeremic A, Kelly M, Cho J-H, Cho S-J, Horber JKH, Jena BP (2004) Calcium drives fusion of SNARE-apposed bilayers. Cell Biol Int 28:19–31

    Article  PubMed  CAS  Google Scholar 

  59. Malhotra V, Orci L, Glick BS, Block MR, Rothman JE (1988) Role of an N-ethylmaleimide-sensitive transport component in promoting fusion of transport vesicles with cisternae of the Golgi stack. Cell 54:221–227

    Article  PubMed  CAS  Google Scholar 

  60. Trimble WS, Cowan DW, Scheller RH (1988) VAMP-1: a synaptic vesicle-associated integral membrane protein. Proc Natl Acad Sci U S A 85:4538–4542

    Article  PubMed  CAS  Google Scholar 

  61. Oyler GA, Higgins GA, Hart RA, Battenberg E, Billingsley M, Bloom FE, Wilson MC (1989) The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations. J Cell Biol 109:3039–3052

    Article  PubMed  CAS  Google Scholar 

  62. Bennett MK, Calakos N, Schller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257:255–259

    Article  PubMed  CAS  Google Scholar 

  63. Cho S-J, Kelly M, Rognlien KT, Cho J, Hörber JK, Jena BP (2002) SNAREs in opposing bilayers interact in a circular array to form conducting pores. Biophys J 83:2522–2527

    Article  PubMed  CAS  Google Scholar 

  64. Cho WJ, Jeremic A, Jena BP (2005) Size of supramolecular SNARE complex: membrane-directed self-assembly. J Am Chem Soc 127:10156–10157

    Article  PubMed  CAS  Google Scholar 

  65. Cho WJ, Lee J-S, Ren G, Zhang L, Shin L, Manke CW, Potoff J, Kotaria N, Zhvania MG, Jena BP (2011) Membrane-directed molecular assembly of the neuronal SNARE complex. J Cell Mol Med 15:31–37

    Article  PubMed  CAS  Google Scholar 

  66. Jeremic A, Cho WJ, Jena BP (2004) Membrane fusion: what may transpire at the atomic level. J Biol Phys Chem 4:139–142

    Article  CAS  Google Scholar 

  67. Potoff JJ, Issa Z, Manke CW Jr, Jena BP (2008) Ca2+-Dimethylphosphate complex formation: providing insight into Ca2+ mediated local dehydration and membrane fusion in cells. Cell Biol Int 32:361–366

    Article  PubMed  CAS  Google Scholar 

  68. Jena BP, Schneider SW, Geibel JP, Webster P, Oberleithner H, Sritharan KC (1997) Gi regulation of secretory vesicle swelling examined by atomic force microscopy. Proc Natl Acad Sci U S A 94:13317–13322

    Article  PubMed  CAS  Google Scholar 

  69. Cho S-J, Sattar AK, Jeong EH, Satchi M, Cho J, Dash S, Mayes MS, Stromer MH, Jena BP (2002) Aquaporin 1 regulates GTP-induced rapid gating of water in secretory vesicles. Proc Natl Acad Sci U S A 99:4720–4724

    Article  PubMed  CAS  Google Scholar 

  70. Binnig G, Quate CF, Gerber CH (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  71. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK (1989) An atomic resolution atomic force microscope implemented using an optical lever. J Appl Phys 65:164–167

    Article  CAS  Google Scholar 

  72. Gaisano HY, Sheu L, Wong PP, Klip A, Trimble WS (1997) SNAP-23 is located in the basolateral plasma membrane of rat pancreatic acinar cells. FEBS Lett 414:298–302

    Article  PubMed  CAS  Google Scholar 

  73. Lee J-S, Cho W-J, Jeftinija K, Jeftinija S, Jena BP (2009) Porosome in astrocytes. J Cell Mol Med 13:365–372

    Article  PubMed  CAS  Google Scholar 

  74. Cho W-J, Shin L, Ren G, Jena BP (2009) Structure of membrane-associated neuronal SNARE complex: implication in neurotransmitter release. J Cell Mol Med 13:4161–4165

    Article  PubMed  CAS  Google Scholar 

  75. Mohrmann R, de Wit H, Verhage M, Neher E, Sørensen JB (2010) Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 330:502–505

    Article  PubMed  CAS  Google Scholar 

  76. Ludtke SJ, Baldwin PR, Chiu W (1999) EMAN: semiautomated software for high-resolution single-particle reconstructions. J Struct Biol 128:82–97

    Article  PubMed  CAS  Google Scholar 

  77. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Lasjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116:190–199

    Article  PubMed  CAS  Google Scholar 

  78. Goddard TD, Huang CC, Ferrin TE (2005) Software extensions to UCSF Chimera for interactive visualization of large molecular assemblies. Structure 13:473–482

    Article  PubMed  CAS  Google Scholar 

  79. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  80. Elshennawy WW (2011) Image processing and numerical analysis approaches of porosome in mammalian pancreatic acinar cell. J Am Sci 7:835–843

    Google Scholar 

  81. Savigny P, Evans J, McGarth KM (2007) Cell membrane structures during exocytosis. Endocrinology 148:3863–3874

    Article  PubMed  CAS  Google Scholar 

  82. Matsuno A, Itoh J, Mizutani A, Takekoshi S, Osamura RY, Okinaga H, Ide F, Miyawaki S, Uno T, Asano S, Tanaka J, Nakaguchi H, Sasaki M, Murakami M (2008) Co-transfection of EYFP-GH and ECFP-rab3B in an experimental pituitary GH3 cell: a role of rab3B in secretion of GH through porosome. Folia Histochem Cytobiol 46:419–421

    PubMed  CAS  Google Scholar 

  83. Drescher DG, Cho WJ, Drescher MJ (2011) Identification of the porosome complex in the hair cell. Cell Biol Int Rep 18(1):e00012

    Article  Google Scholar 

  84. Okuneva VG, Japaridze ND, Kotaria NT, Zhvania MG (2011) Neuronal porosome in the rat and cat brain: electron microscopic study. J Tcitologiya (in press)

    Google Scholar 

  85. Zhao D, Lulevich V, Liu F, Liu G (2010) Applications of atomic force microscopy in biophysical chemistry. J Phys Chem B 114:5971–5982

    Article  Google Scholar 

Download references

Acknowledgement

The author thanks the many students and collaborators who have participated in the various studies discussed in this article. Support from the National Institutes of Health (USA), the National Science Foundation (USA), and Wayne State University is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhanu P. Jena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jena, B.P. (2012). Porosome: The Secretory NanoMachine in Cells. In: Taatjes, D., Roth, J. (eds) Cell Imaging Techniques. Methods in Molecular Biology, vol 931. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-056-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-056-4_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-055-7

  • Online ISBN: 978-1-62703-056-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics