Skip to main content

Measuring the Elastic Properties of Living Cells with Atomic Force Microscopy Indentation

  • Protocol
  • First Online:
Cell Imaging Techniques

Part of the book series: Methods in Molecular Biology ((MIMB,volume 931))

Abstract

Atomic force microscopy (AFM) is a powerful and versatile tool for probing the mechanical properties of biological samples. This chapter describes the procedures for using AFM indentation to measure the elastic moduli of living cells. We include step-by-step instructions for cantilever calibration and data acquisition using a combined AFM/optical microscope system, as well as a detailed protocol for data analysis. Our protocol is written specifically for the BioScope™ Catalyst™ AFM system (Bruker AXS Inc.); however, most of the general concepts can be readily translated to other commercial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang N et al (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282:C606–C616

    PubMed  CAS  Google Scholar 

  2. Nagayama M, Haga H, Kawabata K (2001) Drastic change of local stiffness distribution correlating to cell migration in living fibroblasts. Cell Motil Cytoskeleton 50:173–179

    Article  PubMed  CAS  Google Scholar 

  3. Park S et al (2005) Cell motility and local viscoelasticity of fibroblasts. Biophys J 89:4330–4342

    Article  PubMed  CAS  Google Scholar 

  4. Chowdhury F et al (2010) Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stem cells. Nat Mater 9:82–88

    Article  PubMed  CAS  Google Scholar 

  5. Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  PubMed  CAS  Google Scholar 

  6. Solon J et al (2007) Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93:4453–4461

    Article  PubMed  CAS  Google Scholar 

  7. Dulinska I et al (2006) Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66:1–11

    Article  PubMed  CAS  Google Scholar 

  8. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10:63–73

    Article  PubMed  CAS  Google Scholar 

  9. Ingber DE (2003) Mechanobiology and diseases of mechanotransduction. Ann Med 35:564–577

    Article  PubMed  Google Scholar 

  10. Lekka M et al (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28:312–316

    Article  PubMed  CAS  Google Scholar 

  11. Cross SE et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783

    Article  PubMed  CAS  Google Scholar 

  12. Ochalek T et al (1988) Correlation between cell deformability and metastatic potential in B16-F1 melanoma cell variants. Cancer Res 48:5124–5128

    PubMed  CAS  Google Scholar 

  13. Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Biomater 3:413–438

    Article  PubMed  Google Scholar 

  14. Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63:1165–1169

    Article  PubMed  CAS  Google Scholar 

  15. Hochmuth RM, Evans EA (1982) Extensional flow of erythrocyte membrane from cell body to elastic tether. I. Analysis. Biophys J 39:71–81

    Article  PubMed  CAS  Google Scholar 

  16. Evans E, Yeung A (1989) Apparent viscosity and cortical tension of blood granulocytes determined by micropipette aspiration. Biophys J 56:151–160

    Article  PubMed  CAS  Google Scholar 

  17. Yamada S, Wirtz D, Kuo SC (2000) Mechanics of living cells measured by laser tracking microrheology. Biophys J 78:1736–1747

    Article  PubMed  CAS  Google Scholar 

  18. Wang N, Butler J, Ingber D (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127

    Article  PubMed  CAS  Google Scholar 

  19. Radmacher M et al (1992) From molecules to cells: imaging soft samples with the atomic force microscope. Science 257:1900–1905

    Article  PubMed  CAS  Google Scholar 

  20. Radmacher M (2007) Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol 83:347–372

    Article  PubMed  CAS  Google Scholar 

  21. Benoit M et al (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317

    Article  PubMed  CAS  Google Scholar 

  22. Chaudhuri O et al (2009) Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat Methods 6:383–387

    Article  PubMed  CAS  Google Scholar 

  23. Hertz H, Angew JR (1881) Ueber die Berührung fester elastischer Körper. J Reine Angew Math 92:156–171

    Google Scholar 

  24. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Engng Sci 3:47–57

    Article  Google Scholar 

  25. Bilodeau GG (1992) Regular pyramid punch problem. J Appl Mech 59:519–523

    Article  Google Scholar 

  26. Rico F et al (2005) Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips. Phys Rev E Stat Nonlin Soft Matter Phys 72:021914

    Article  PubMed  Google Scholar 

  27. Costa KD (2006) Imaging and probing cell mechanical properties with the atomic force microscope. Methods Mol Biol 319:331–361

    Article  PubMed  Google Scholar 

  28. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  29. Burnham NA et al (2003) Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14:1

    Article  CAS  Google Scholar 

  30. Charras GT, Lehenkari PP, Horton MA (2001) Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86:85–95

    Article  PubMed  CAS  Google Scholar 

  31. Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    Article  PubMed  CAS  Google Scholar 

  32. Lin DC, Dimitriadis EK, Horkay F (2007) Robust strategies for automated AFM force curve analysis–-I. Non-adhesive indentation of soft, inhomogeneous materials. J Biomech Eng 129:430–440

    Article  PubMed  Google Scholar 

  33. Radmacher M, Domke J (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325

    Article  Google Scholar 

  34. Schneider SW et al (2004) Shape and volume of living aldosterone-sensitive cells imaged with the atomic force microscope. Methods Mol Biol 242:255–279

    PubMed  Google Scholar 

  35. Shin D, Athanasiou K (1999) Cytoindentation for obtaining cell biomechanical properties. J Orthop Res 17:880–890

    Article  PubMed  CAS  Google Scholar 

  36. Trickey WR et al (2006) Determination of the Poisson’s ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration. J Biomech 39:78–87

    Article  PubMed  Google Scholar 

  37. Mahaffy RE et al (2000) Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys Rev Lett 85:880

    Article  PubMed  CAS  Google Scholar 

  38. Matthewson MJ (1981) Axi-symmetric contact on thin compliant coatings. J Mech Phys Solids 29:89–113

    Article  Google Scholar 

  39. Dimitriadis EK et al (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  PubMed  CAS  Google Scholar 

  40. Mahaffy RE et al (2004) Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys J 86:1777–1793

    Article  PubMed  CAS  Google Scholar 

  41. Costa KD, Sim AJ, Yin FCP (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng 128:176–184

    Article  PubMed  Google Scholar 

  42. Carl P, Schillers H (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 457:551–559

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants to S.K. from the NSF (CMMI 0727420) and the NIH (1DP2OD004213, Director’s New Innovator Award, part of the NIH Roadmap for Medical Research; 1U54CA143836, Physical Sciences Oncology Center Grant). J.L.M. was supported in part by a Graduate Research Supplement (GRS) to Broaden Participation, in association with NSF CMMI 0727420.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

MacKay, J.L., Kumar, S. (2012). Measuring the Elastic Properties of Living Cells with Atomic Force Microscopy Indentation. In: Taatjes, D., Roth, J. (eds) Cell Imaging Techniques. Methods in Molecular Biology, vol 931. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-056-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-056-4_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-055-7

  • Online ISBN: 978-1-62703-056-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics