Skip to main content

Interspecies Extrapolation

  • Protocol
  • First Online:
Computational Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 929))

Abstract

Interspecies extrapolation encompasses two related but distinct topic areas that are germane to quantitative extrapolation and hence computational toxicology—dose scaling and parameter scaling. Dose scaling is the process of converting a dose determined in an experimental animal to a toxicologically equivalent dose in humans using simple allometric assumptions and equations. In a hierarchy of quantitative extrapolation approaches, this option is used when minimal information is available for a chemical of interest. Parameter scaling refers to cross-species extrapolation of specific biological processes describing rates associated with pharmacokinetic (PK) or pharmacodynamic (PD) events on the basis of allometric relationships. These parameters are used in biologically based models of various types that are designed for not only cross-species extrapolation but also for exposure route (e.g., inhalation to oral) and exposure scenario (duration) extrapolation. This area also encompasses in vivo scale-up of physiological rates determined in various experimental systems. Results from in vitro metabolism studies are generally most useful for interspecies extrapolation purposes when integrated into a physiologically based pharmacokinetic (PBPK) modeling framework. This is because PBPK models allow consideration and quantitative evaluation of other physiological factors, such as binding to plasma proteins and blood flow to the liver, which may be as or more influential than metabolism in determining relevant dose metrics for risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dedrick RL (1973) Animal scale-up. J Pharmacokinet Biopharm 1:435–461

    PubMed  CAS  Google Scholar 

  2. U.S. EPA (U.S. Environmental Protection Agency) (1992) Draft report: a cross-species scaling factor for carcinogen risk assessment based on equivalence of mg/kg3/4/day. Notice Fed Reg 57:24152–24173

    Google Scholar 

  3. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353

    CAS  Google Scholar 

  4. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541

    PubMed  CAS  Google Scholar 

  5. Kleiber M (1961) The fire of life: an introduction to animal energetics. Wiley, New York, NY

    Google Scholar 

  6. O’Flaherty EJ (1989) Interspecies conversion of kinetically equivalent doses. Risk Anal 9:587–598

    Article  Google Scholar 

  7. Rhomberg LR, Lewandowski TA (2006) Methods for identifying a default cross-species scaling factor. Hum Ecol Risk Assess 12:1094–1127

    Article  Google Scholar 

  8. Travis CC, White RK (1988) Interspecies scaling of toxicity data. Risk Anal 8:119–125

    Article  PubMed  CAS  Google Scholar 

  9. U.S. EPA (2005) Guidelines for carcinogen risk assessment. EPA/630/P-03/001F Risk Assessment Forum, Washington, DC

    Google Scholar 

  10. U.S. EPA (2011) Harmonization in interspecies extrapolation: use of body weight3/4 as the default method in derivation of the oral reference dose. EPA/100/R11/0001 Risk Assessment Forum, Washington, DC

    Google Scholar 

  11. Clewell HJ, Reddy MB, Lave T, Andersen ME (2008) Physiologically based pharmacokinetic modeling. In: Gad SC (ed) Preclinical development handbook: ADME and biopharmaceutical properties. Wiley, New York, NY, pp 1167–1227

    Google Scholar 

  12. Lipscomb JC, Poet TS (2008) In vitro measurements of metabolism for application in pharmacokinetic modeling. Pharmacol Ther 118:82–103

    Article  PubMed  CAS  Google Scholar 

  13. Matthews JC (1993) Fundamentals of receptor, enzyme and transport kinetics. CRC, Boca Raton, FL

    Google Scholar 

  14. Cornish-Bowden A (1995) Analysis of enzyme kinetic data. Oxford University Press, Oxford

    Google Scholar 

  15. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  16. Rubner M (1883) Uber den einfluss der korpergrosse auf stoff- und kraftwechsel. Zeit Biol 19:536–562

    Google Scholar 

  17. McMahon TA (1975) Using body size to understand the structural design of animals: quadrupedal locomotion. J Appl Physiol 39:619–627

    PubMed  CAS  Google Scholar 

  18. West GB, Brown JH, Endquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  PubMed  CAS  Google Scholar 

  19. West GB, Woodruff WH, Brown JH (2002) Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci U S A 99(Suppl 1):2473–2478

    Article  PubMed  Google Scholar 

  20. Banavar JR, Maritan A, Rinaldo A (1999) Size and form in efficient transportation networks. Nature 399:130–131

    Article  PubMed  CAS  Google Scholar 

  21. Bejan A (2000) Shape and structure, from engineering to nature. Cambridge University Press, Cambridge

    Google Scholar 

  22. White CR, Seymour RS (2003) Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci U S A 100:4046–4049

    Article  PubMed  CAS  Google Scholar 

  23. Dodds PS, Rothman DH, Weitz JS (2001) Re-examination of the “3/4-law” of metabolism. J Theor Biol 209:9–27

    Article  PubMed  CAS  Google Scholar 

  24. IPCS (International Programme on Chemical Safety) (2005) Guidance document for the use of data in development of chemical-specific adjustment factors (CSAFs) for interspecies differences and human variability in dose/concentration-response assessment. World Health Organization, Geneva

    Google Scholar 

  25. U.S. EPA (1994) Methods for derivation of inhalation reference concentrations and application of inhalation dosimetry. EPA/600/8-90/066F. Environmental Criteria and Assessment Office, Washington, DC

    Google Scholar 

  26. Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics. J Pharmacokinet Biopharm 10:201–227

    PubMed  CAS  Google Scholar 

  27. Reddy MB, Yang RSH, Clewell HJ, Andersen ME (2005) Physiologically based pharmacokinetic modeling—science and applications. Wiley Interscience, Hoboken, NJ

    Book  Google Scholar 

  28. Adolph EF (1949) Quantitative relations in the physiological constitutions of mammals. Science 109:579–585

    Article  PubMed  CAS  Google Scholar 

  29. Mordenti J (1986) Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci 75:1028–1040

    Article  PubMed  CAS  Google Scholar 

  30. Andersson TB, Sjoberg H, Hoffman K-J, Boobis AR, Watts P, Edwards RJ, Lake BJ, Price RJ, Renwick AB, Gomez-Lechon MJ, Castell JV, Ingelman-Sundberg M, Hidestrand M, Goldfarb PS, Lewis DFV, Corcos L, Guillouzo A, Taavitsainen P, Pelkonen O (2001) An assessment of human liver-derived in vitro systems to predict the in vivo metabolism and clearance of almokalant. Drug Metab Dispos 29:712–720

    PubMed  CAS  Google Scholar 

  31. Carlile DJ, Zomorodi K, Houston JB (1997) Scaling factors to relate drug metabolic clearance in hepatic microsomes, isolated hepatocytes and the intact liver—studies with induced livers involving diazepam. Drug Metab Dispos 25:903–911

    PubMed  CAS  Google Scholar 

  32. Tang W, Wang RW, Lu AYH (2005) Utility of recombinant cytochrome P450 enzymes: a drug metabolism perspective. Curr Drug Metab 6:503–517

    Article  PubMed  CAS  Google Scholar 

  33. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13:407–484

    PubMed  CAS  Google Scholar 

  34. U.S. EPA (Lipscomb JC, Kedderis GL) (2005) Use of physiologically based pharmacokinetic models to quantify the impact of human age and interindividual differences in physiology and biochemistry pertinent to risk: final report for cooperative agreement ORD/NCEA Cincinnati, OH EPA/600/R-06-014A

    Google Scholar 

  35. Lipscomb JC, Teuschler LK, Swartout JC, Popken D, Cox T, Kedderis GL (2003) The impact of cytochrome P450 2E1-dependent metabolic variance on a risk relevant pharmacokinetic outcome in humans. Risk Anal 23:1221–1238

    Article  PubMed  Google Scholar 

  36. Lipscomb JC, Kedderis GL (2002) Incorporating human interindividual biotransformation variance in health risk assessment. Sci Total Environ 288:12–21

    Article  Google Scholar 

  37. Lipscomb JC (2004) Evaluating the relationship between variance in enzyme expression and toxicant concentration in health risk assessment. Hum Ecol Risk Assess 10:39–55

    Article  CAS  Google Scholar 

  38. Thrall KD, Gies RA, Muniz J, Woodstock AD, Higgins G (2002) Route-of-entry and brain tissue partition coefficients for common superfund contaminants. J Toxicol Environ Health Part A 65:2075–2086

    Article  PubMed  CAS  Google Scholar 

  39. Gargas ML, Burgess RJ, Voisard DE, Cason GH, Andersen ME (1989) Partition coefficients of low-molecular-weight volatile chemicals in various liquids and tissues. Toxicol Appl Pharmacol 98:87–99

    Article  PubMed  CAS  Google Scholar 

  40. Lilly PD, Andersen ME, Ross TM, Pegram RA (1997) Physiologically based estimation of in vivo rates of bromodichloromethane metabolism. Toxicology 124:141–152

    Article  PubMed  CAS  Google Scholar 

  41. Kenyon EM, Kraichely RE, Hudson KT, Medinsky MA (1996) Differences in rates of benzene metabolism correlate with observed genotoxicity. Toxicol Appl Pharmacol 136:649–656

    Article  Google Scholar 

  42. Gargas ML, Andersen ME, Clewell HJ (1986) A physiologically based simulation approach for determining metabolic constants from gas uptake data. Toxicol Appl Pharmacol 86:341–352

    Article  PubMed  CAS  Google Scholar 

  43. Lipscomb JC, Barton H, Tornerol-Velez R (2004) The metabolic rate constants and specific activity of human and rat hepatic cytochrome P450 2E1 toward chloroform. J Toxicol Environ Health 67:537–553

    Article  CAS  Google Scholar 

  44. Delic JI, Lilly PD, MacDonald AJ, Loizou GD (2000) The utility of PBPK in the safety assessment of chloroform and carbon tetrachloride. Reg Toxicol Pharmacol 32:144–155

    Article  CAS  Google Scholar 

  45. Corley RA, Mendrala AL, Smith FA et al (1990) Development of a physiologically based pharmacokinetic model for chloroform. Toxicol Appl Pharmacol 103:512–527

    Article  PubMed  CAS  Google Scholar 

  46. Beck BD, Clewell HJ III (2001) Uncertainty/safety factors in health risk assessment: opportunities for improvement. Hum Ecol Risk Assess 7:203–207

    Article  Google Scholar 

  47. Travis CC (1990) Tissue dosimetry for reactive metabolites. Risk Anal 10:317–321

    Article  PubMed  CAS  Google Scholar 

  48. Rhomberg LR, Wolff SK (1998) Empirical scaling of single oral lethal doses across mammalian species base on a large database. Risk Anal 18:741–753

    Article  PubMed  CAS  Google Scholar 

  49. Burzala-Kowalczyk L, Jongbloed G (2011) Allometric scaling: analysis of LD50 data. Risk Anal 31:523–532

    Article  PubMed  Google Scholar 

  50. Ginsberg G, Hattis D, Sonawane B, Russ A, Banati P, Kozlak M, Smolenski S, Goble R (2002) Evaluation of child/adult pharmacokinetic differences from a database derived from the therapeutic drug literature. Toxicol Sci 66:185–200

    Article  PubMed  CAS  Google Scholar 

  51. Ginsberg G, Hattis D, Miller R, Sonawane B (2004) Pediatric pharmacokinetic data: implications for environmental risk assessment for children. Pediatrics 113(Suppl):973–983

    PubMed  Google Scholar 

  52. Hattis D (2004) Role of dosimetric scaling and species extrapolation in evaluating risks across life stages IV pharmacodynamic dosimetric considerations. Report to the U.S. Environmental Protection Agency under RFQ No DC-03-00009

    Google Scholar 

  53. Finlay BL, Darlington RB (1995) Linked regularities in the development and evolution of mammalian brains. Science 268:1578–1584

    Article  PubMed  CAS  Google Scholar 

  54. Renwick AG, Lazarus NR (1998) Human variability and noncancer risk assessment—an analysis of the default uncertainty factor. Regul Toxicol Pharmacol 27:3–20

    Article  CAS  Google Scholar 

  55. Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17

    Article  PubMed  CAS  Google Scholar 

  56. Krishnam K, Andersen ME (1994) Physiologically based pharmacokinetic modeling in toxicology. In: Hayes AW (ed) Principles and methods of toxicology, 3rd edn. Raven Press, New York, NY, pp 149–188

    Google Scholar 

  57. Jepson GW, Hoover DK, Black RK, McCafferty JD, Mahle DA, Gearhart JM (1994) A partition coefficient determination method for nonvolatile chemicals in biological tissues. Fundam Appl Toxicol 22:519–524

    Article  PubMed  CAS  Google Scholar 

  58. Gallo JM, Lam FC, Perrier DG (1987) Area method for the estimation of partition coefficients for physiological pharmacokinetic models. J Pharmacokinet Biopharm 15:271–280

    PubMed  CAS  Google Scholar 

  59. Teo SKO, Kedderis GL, Gargas ML (1994) Determination of tissue partition coefficients for volatile tissue-reactive chemicals: acrylonitrile and its metabolite 2-cyanoethylene oxide. Toxicol Appl Pharmacol 128:92–96

    Article  PubMed  CAS  Google Scholar 

  60. Khor SP, Mayersohn M (1991) Potential error in the measurement of tissue to blood distribution coefficients in physiological pharmacokinetic modeling residual tissue blood I theoretical considerations. Drug Metab Dispos 19:478–485

    PubMed  CAS  Google Scholar 

  61. Poulin P, Krishnan K (1995) An algorithm for predicting tissue:blood partition coefficients or organic chemicals from n-octanol:water partition coefficient data. J Toxicol Environ Health 46:117–129

    Article  PubMed  CAS  Google Scholar 

  62. Poulin P, Krishnan K (1996) A mechanistic algorithm for predicting blood:air partition coefficients of organic chemicals with the consideration of reversible binding in hemoglobin. Toxicol Appl Pharmacol 136:131–137

    Article  PubMed  CAS  Google Scholar 

  63. Barter ZE, Bayliss MK, Beaune PH, Bobbis AR, Carlile DJ, Edwards RJ, Houston JB, Lake BG, Lipscomb JC, Pelkonen OR, Tucker GT, Rostami-Hodjegan A (2007) Scaling factors for the extrapolation of in vivo metabolic drug clearance from in vitro data: reaching a consensus on values of human microsomal protein and hepatocellularity per gram of liver. Curr Drug Metab 8:33–45

    Article  PubMed  CAS  Google Scholar 

  64. Houston JB (1994) Utility of in vitro drug metabolism data in predicting in vivo metabolic clearance. Biochem Pharmacol 47:1469–1479

    Article  PubMed  CAS  Google Scholar 

  65. Blaauboer BJ (2010) Biokinetic modeling and in vitro-in vivo extrapolations. J Toxicol Environ Health Part B 13:242–252

    Article  CAS  Google Scholar 

  66. Howgate EM, Yeo KR, Proctor NJ, Tucker GT, Rostami-Hodjegan A (2006) Prediction of in vivo drug clearance from in vitro data I impact of inter-individual variability. Xenobiotica 36:473–497

    Article  PubMed  CAS  Google Scholar 

  67. Obach RS (1999) Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos 27:1350–1359

    PubMed  CAS  Google Scholar 

  68. Kedderis GL (1997) Extrapolation of in vitro enzyme induction data to human in vivo. Chem-Biol Interact 107:109–121

    Article  PubMed  CAS  Google Scholar 

Download references

Disclaimer

This manuscript has been reviewed in accordance with the policy of the National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaina M. Kenyon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kenyon, E.M. (2012). Interspecies Extrapolation. In: Reisfeld, B., Mayeno, A. (eds) Computational Toxicology. Methods in Molecular Biology, vol 929. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-050-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-050-2_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-049-6

  • Online ISBN: 978-1-62703-050-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics