Skip to main content

Virtual Ligand Screening Combined with NMR to Identify Dvl PDZ Domain Inhibitors Targeting the Wnt Signaling

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 928))

  • 2390 Accesses

Abstract

Virtual ligand screening is a powerful technique to identify potential hits of targets and to increase hit rates. Here, we describe how we used this technique combined with NMR 15N HSQC experiments to obtain small molecules that bind to the PDZ domain of Dvl targeting the Wnt signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wong H-C, et al. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the c-terminal region of Frizzled. Mol Cell. 2003;12:1251–60.

    Article  PubMed  CAS  Google Scholar 

  2. Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov. 2006;5:997–1014.

    Article  PubMed  CAS  Google Scholar 

  3. Grandy D, et al. Discovery and characterization of a small molecule inhibitor of the PDZ domain of dishevelled. J Biol Chem. 2009; 284:16256–63.

    Article  PubMed  CAS  Google Scholar 

  4. Lee HJ, et al. Sulindac inhibits canonical Wnt signaling by blocking the PDZ domain of the protein Dishevelled. Angew Chem Int Ed Engl. 2009;48:6448–52.

    Article  PubMed  CAS  Google Scholar 

  5. Lee HJ, Zheng JJ. PDZ domains and their binding partners: structure, specificity, and modification. Cell Commun Signal. 2010;8:8.

    Article  PubMed  Google Scholar 

  6. Cheyette BNR, et al. Dapper, a Dishevelled-associated antagonist of b-Catenin and JNK signaling, is required for Notochord formation. Dev Cell. 2002;2:449–61.

    Article  PubMed  CAS  Google Scholar 

  7. Gohlke H, Case DA. Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf. J Comput Chem. 2004;25:238–50.

    Article  PubMed  CAS  Google Scholar 

  8. Wang J, et al. Use of MM-PBSA in reproducing the binding free energies to HIV-1 RT of TIBO derivatives and predicting the binding mode to HIV-1 RT of efavirenz by docking and MM-PBSA. J Am Chem Soc. 2001;123:5221–30.

    Article  PubMed  CAS  Google Scholar 

  9. Wang W, et al. BIOMOLECULAR SIMULATIONS: Recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu Rev Biophys Biomol Struct. 2001;30:211–43.

    Article  PubMed  CAS  Google Scholar 

  10. Burbaum JJ, Sigal NH. New technologies for high-throughput screening. Curr Opin Chem Biol. 1997;1:72–8.

    Article  PubMed  CAS  Google Scholar 

  11. Liu B, et al. Technological advances in high-throughput screening. Am J Pharmacogenomics. 2004;4:263–76.

    Article  PubMed  CAS  Google Scholar 

  12. Bleicher KH, et al. Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov. 2003;2:369–78.

    Article  PubMed  CAS  Google Scholar 

  13. Keseru GM, Makara GM. Hit discovery and hit-to-lead approaches. Drug Discov Today. 2006;11:741–8.

    Article  PubMed  Google Scholar 

  14. Irwin JJ, Shoichet BK. ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2004; 45:177–82.

    Article  Google Scholar 

  15. Hann MM, Oprea TI. Pursuing the leadlikeness concept in pharmaceutical research. Curr Opin Chem Biol. 2004;8:255–63.

    Article  PubMed  CAS  Google Scholar 

  16. Shan J, et al. Identification of a specific inhibitor of the Dishevelled PDZ domain. Biochemistry. 2005;44:15495–503.

    Article  PubMed  CAS  Google Scholar 

  17. London TBC, et al. Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain. Biochem Biophys Res Commun. 2004;322:326–32.

    Article  PubMed  CAS  Google Scholar 

  18. Hurst T. Flexible 3D searching: the directed tweak technique. J Chem Inf Comput Sci. 1994;34:190–6.

    Article  CAS  Google Scholar 

  19. Rarey M, et al. A fast flexible docking method using an incremental construction algorithm. J Mol Biol. 1996;261:470–89.

    Article  PubMed  CAS  Google Scholar 

  20. Clark RD, et al. Consensus scoring for ligand/protein interactions. J Mol Graph Model. 2002;20:281–95.

    Article  PubMed  CAS  Google Scholar 

  21. Zheng J, et al. Identification of the binding site for acidic phospholipids on the PH domain of dynamin: Implications for stimulation of GTPase activity. J Mol Biol. 1996;255:14–21.

    Article  PubMed  CAS  Google Scholar 

  22. Delaglio F, et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6:277–93.

    Article  PubMed  CAS  Google Scholar 

  23. Goddard TD, Kenller DG SPARKY 3. University of California, San Francisco 2008.

    Google Scholar 

  24. Worrall JAR, et al. Transient protein interactions studied by NMR spectroscopy: the case of cytochrome c and adrenodoxin. Biochemistry. 2003;42:7068–76.

    Article  PubMed  CAS  Google Scholar 

  25. Case DA, et al. AMBER 8. La Jolla: Scripps Research Institute; 2004.

    Google Scholar 

  26. Wang J, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25:1157–74.

    Article  PubMed  CAS  Google Scholar 

  27. Cornell WD, et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc. 1995;117:5179–97.

    Article  CAS  Google Scholar 

  28. Cerutti DS, et al. Staggered Mesh Ewald: an extension of the Smooth Particle-Mesh Ewald method adding great versatility. J Chem Theory Comput. 2009;5:2322.

    Article  PubMed  CAS  Google Scholar 

  29. Simmerling C, et al. Combined locally enhanced sampling and Particle Mesh Ewald as a strategy to locate the experimental structure of a nonhelical nucleic acid. J Am Chem Soc. 1998;120:7149–55.

    Article  CAS  Google Scholar 

  30. Gohlke H, et al. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J Mol Biol. 2003; 330:891–913.

    Article  PubMed  CAS  Google Scholar 

  31. Kollman PA, et al. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res. 2000;33:889–97.

    Article  PubMed  CAS  Google Scholar 

  32. Gund P. Three-dimensional pharmacophoric pattern searching. Prog Mol Subcell Biol. 1977;5:17.

    Google Scholar 

  33. Guner OF. Pharmacophore perception, development, and use in drug design. La Jolla: International University Line; 2000.

    Google Scholar 

  34. Langer T, Hoffmann RD. Pharmacophores and pharmacophore searches. Wiley: Weinheim; 2006.

    Book  Google Scholar 

  35. Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2004;45:160–9.

    Article  Google Scholar 

  36. Friesner RA, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–49.

    Article  PubMed  CAS  Google Scholar 

  37. Long J-F, et al. Supramodular structure and synergistic target binding of the N-terminal tandem PDZ domains of PSD-95. J Mol Biol. 2003;327:203–14.

    Article  PubMed  CAS  Google Scholar 

  38. Feng W, et al. PDZ7 of glutamate receptor interacting protein binds to its target via a novel hydrophobic surface area. J Biol Chem. 2002;277:41140–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie J. Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shan, J., Zheng, J.J. (2012). Virtual Ligand Screening Combined with NMR to Identify Dvl PDZ Domain Inhibitors Targeting the Wnt Signaling. In: Zheng, Y. (eds) Rational Drug Design. Methods in Molecular Biology, vol 928. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-008-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-008-3_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-007-6

  • Online ISBN: 978-1-62703-008-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics