Skip to main content

Production of Camel-Like Antibodies in Plants

  • Protocol
  • First Online:
Single Domain Antibodies

Abstract

Transgenic plants for the production of high-value recombinant complex and/or glycosylated proteins are a promising alternative for conventional systems, such as mammalian cells and bacteria. Many groups use plants as production platform for antibodies and antibody fragments. Here, we describe how bivalent camel-like antibodies can be produced in leaves and seeds. Camel-like antibodies are fusions of the antigen-binding domain of heavy chain camel antibodies (VHH) with an Fc fragment of choice. Transient expression in Nicotiana benthamiana leaves allows the production of VHH-Fc antibodies within a few days after the expression plasmid has been obtained. Generation of stable Arabidopsis thaliana transformants allows production of scalable amounts of VHH-Fc antibodies in seeds within a year. Further, we describe how the in planta-produced VHH-Fc antibodies can be quantified by Western blot analysis with Fc-specific antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ma JK-C et al (2005) Plant-derived pharmaceuticals—the road forward. Trends Plant Sci 10:580–585

    Article  PubMed  CAS  Google Scholar 

  2. Stoger E et al (2005) Recent progress in plantibody technology. Curr Pharm Des 11:2439–2457

    Article  PubMed  CAS  Google Scholar 

  3. Basaran P, Rodríguez-Cerezo E (2008) Plant molecular farming: opportunities and challenges. Crit Rev Biotechnol 28:153–172

    Article  PubMed  Google Scholar 

  4. De Muynck B, Navarre C, Boutry M (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529–563

    Article  PubMed  Google Scholar 

  5. Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    Article  PubMed  CAS  Google Scholar 

  6. Gleba Y, Klimyuk V, Marillonnet S (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  PubMed  CAS  Google Scholar 

  7. Giritch A et al (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci USA 103:14701–14706

    Article  PubMed  CAS  Google Scholar 

  8. Musiychuk K et al (2007) A launch vector for the production of vaccine antigens in plants. Influenza Other Respi Viruses 1:19–25

    Article  PubMed  CAS  Google Scholar 

  9. Sainsbury F, Lomonossoff GP (2008) Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol 148:1212–1218

    Article  PubMed  CAS  Google Scholar 

  10. Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7:682–693

    Article  PubMed  CAS  Google Scholar 

  11. Pogue GP et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Article  PubMed  CAS  Google Scholar 

  12. Lau OS, Sun SSM (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  PubMed  CAS  Google Scholar 

  13. Goossens A et al (1999) The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants. Plant Physiol 120:1095–1104

    Article  PubMed  CAS  Google Scholar 

  14. De Jaeger G et al (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268

    Article  PubMed  Google Scholar 

  15. Van Droogenbroeck B et al (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci USA 104:1430–1435

    Article  PubMed  Google Scholar 

  16. Loos A et al (2011) Production of monoclonal antibodies with a controlled N-glycosylation pattern in seeds of Arabidopsis thaliana. Plant Biotechnol J 9:179–192

    Article  PubMed  CAS  Google Scholar 

  17. Harmsen MM, De Haard HJ (2007) Properties, production and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77:13–22

    Article  PubMed  CAS  Google Scholar 

  18. Voinnet O et al (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33:949–956

    Article  PubMed  CAS  Google Scholar 

  19. Shu L et al (1993) Secretion of a single-gene-encoded immunoglobulin from myeloma cells. Proc Natl Acad Sci USA 90:7995–7999

    Article  PubMed  CAS  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  21. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  22. Griffiths AJF et al (1993) An introduction to genetic analysis, 5th edn. WH Freeman, New York

    Google Scholar 

  23. De Neve M et al (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11:15–29

    Article  PubMed  Google Scholar 

  24. Lowry OH et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  25. Valvekens D, Van Montagu M, Van Lijsebettens M (1988) Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85:5536–5540

    Article  PubMed  CAS  Google Scholar 

  26. De Buck S et al (2009) The T-DNA integration pattern in Arabidopsis transformants is highly determined by the transformed target cell. Plant J 60:134–145

    Article  PubMed  Google Scholar 

  27. Van Droogenbroeck B, De Wilde K, Depicker A (2009) Production of antibody fragments in Arabidopsis seeds. In: Faye L, Gomord V (eds) Recombinant proteins from plants: methods and protocols, vol 483, Methods in molecular biology. Humana Press, Totowa, pp 89–101

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors thank Martine De Cock for help in preparing the manuscript. This work is supported by the European Commission 6th Framework (Pharma Planta, LSHB-CT-2003-503565). We also thank the colleagues involved in the European Cooperation in Science and Technology (COST) action “Molecular Farming: Plants as production platform for high value proteins” FA0804 for helpful discussions. V.V. and T.D.M, and K.D.W. and R.P. are indebted to the “Bijzonder Onderzoeksfonds” of the Ghent University and the “Agentschap voor Innovatie door Wetenschap en Technologie” for predoctoral fellowships, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Depicker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

De Buck, S. et al. (2012). Production of Camel-Like Antibodies in Plants. In: Saerens, D., Muyldermans, S. (eds) Single Domain Antibodies. Methods in Molecular Biology, vol 911. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-968-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-968-6_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-967-9

  • Online ISBN: 978-1-61779-968-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics