Skip to main content

Isolation and Characterization of Clostridium difficile Toxin-Specific Single-Domain Antibodies

  • Protocol
  • First Online:
Single Domain Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 911))

Abstract

Camelidae single-domain antibodies (VHHs) are a unique class of small binding proteins that are promising inhibitors of targets relevant to infection and immunity. With VHH selection from hyperimmunized phage display libraries now routine and the fact that VHHs possess long, extended complementarity-determining region (CDR3) loop structures that can access traditionally immunosilent epitopes, VHH-based inhibition of targets such as bacterial toxins are being explored. Toxin A and toxin B are high molecular weight exotoxins (308 kDa and 269 kDa, respectively) secreted by Clostridium difficile that are the causative agents of C. difficile-associated diseases in humans and in animals. Here, we provide protocols for the rapid generation of C. difficile toxin A- and toxin B-specific VHHs by llama immunization and recombinant antibody/phage display technology approaches and for further characterization of the VHHs with respect to toxin-binding affinity and specificity and the conformational nature of their epitopes.

This is National Research Council Canada Publication 50017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1  All phagemid and cloning vectors are freely available upon request.

References

  1. Wesolowski J et al (2009) Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med Microbiol Immunol 198:157–174

    Article  PubMed  CAS  Google Scholar 

  2. Stewart CS, MacKenzie CR, Hall JC (2007) Isolation, characterization and pentamerization of alpha-cobrotoxin specific single-domain antibodies from a naïve phage display library: preliminary findings for antivenom development. Toxicon 49:699–709

    Article  PubMed  CAS  Google Scholar 

  3. Stone E et al (2007) A novel pentamer versus pentamer approach to generating neutralizers of verotoxin 1. Mol Immunol 44:2487–2491

    Article  PubMed  CAS  Google Scholar 

  4. Hmila I et al (2008) VHH, bivalent domains and chimeric heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI′. Mol Immunol 45:3847–3856

    Article  PubMed  CAS  Google Scholar 

  5. Hmila I et al (2010) A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J 24:3479–3489

    Article  PubMed  CAS  Google Scholar 

  6. Goldman ER et al (2008) Thermostable llama single domain antibodies for detection of botulinum A neurotoxin complex. Anal Chem 80:8583–8591

    Article  PubMed  CAS  Google Scholar 

  7. Conway JO et al (2010) Llama single domain antibodies specific for the 7 botulinum neurotoxin serotypes as heptaplex immunoreagents. PLoS One 5:e8818

    Article  PubMed  Google Scholar 

  8. Dong J et al (2010) A single-domain llama antibody potently inhibits the enzymatic activity of botulinum neurotoxin by binding to the non-catalytic alpha-exosite binding region. J Mol Biol 397:1106–1118

    Article  PubMed  CAS  Google Scholar 

  9. Goldman ER et al (2006) Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Anal Chem 78:8245–8255

    Article  PubMed  CAS  Google Scholar 

  10. Adams H et al (2009) Specific immuno capturing of the staphylococcal superantigen toxin-shock syndrome toxin-1 in plasma. Biotechnol Bioeng 104:143–151

    Article  PubMed  CAS  Google Scholar 

  11. Harmsen MM, van Solt CB, Fijten HP (2009) Enhancement of toxin- and virus-neutralizing capacity of single-domain antibody fragments by N-glycosylation. Appl Microbiol Biotechnol 84:1087–1094

    Article  PubMed  CAS  Google Scholar 

  12. Koch-Nolte F et al (2007) Single domain antibodies from llama effectively and specifically block T cell ecto-ADP-ribosyltransferase ART2.2 in vivo. FASEB J 21:3490–3498

    Article  PubMed  CAS  Google Scholar 

  13. Alzogaray V et al (2010) Single-domain llama antibodies as specific intracellular inhibitors of SpvB, the actin ADP-ribosylating toxin of Salmonella typhimurium. FASEB J 25:526–534

    Article  PubMed  Google Scholar 

  14. Anderson GP et al (2007) Multiplexed fluid array screening of phage displayed anti-ricin single domain antibodies for rapid assessment of specificity. Biotechniques 43:806–811

    Article  PubMed  CAS  Google Scholar 

  15. Hussack G et al (2011) Neutralization of Clostridium difficile toxin A with single-domain antibodies targeting the cell receptor binding domain. J Biol Chem 286:8961–8976.

    Article  PubMed  CAS  Google Scholar 

  16. Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536

    Article  PubMed  CAS  Google Scholar 

  17. Lowy I et al (2010) Treatment with monoclonal antibodies against Clostridium difficile toxins. N Engl J Med 362:197–205

    Article  PubMed  CAS  Google Scholar 

  18. Hussack G, Tanha J (2010) Toxin-specific antibodies for the treatment of Clostridium difficile: current status and future perspectives. Toxins 2:998–1018

    Article  PubMed  CAS  Google Scholar 

  19. Demarest SJ et al (2010) Neutralization of Clostridium difficile toxin A using antibody combinations. MAbs 2:1–9

    Article  Google Scholar 

  20. Arbabi-Ghahroudi M, MacKenzie R, Tanha J (2009) Selection of non-aggregating VH binders from synthetic VH phage-display libraries. Methods Mol Biol 525:187–216

    Article  PubMed  CAS  Google Scholar 

  21. Nguyen VK, Desmyter A, Muyldermans S (2001) Functional heavy-chain antibodies in Camelidae. Adv Immunol 79:261–296

    Article  PubMed  CAS  Google Scholar 

  22. Doyle PJ et al (2008) Cloning, expression, and characterization of a single-domain antibody fragment with affinity for 15-acetyl-deoxynivalenol. Mol Immunol 45:3703–3713

    Article  PubMed  CAS  Google Scholar 

  23. De Simone E et al (2006) Immunochemical analysis of IgG subclasses and IgM in South American camelids. Small Ruminant Res 64:2–9

    Article  Google Scholar 

  24. Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  25. Tung WL, Chow KC (1995) A modified medium for efficient electrotransformation of E. coli. Trends Genet 11:128–129

    Article  PubMed  CAS  Google Scholar 

  26. Muyldermans S, Cambillau C, Wyns L (2001) Recognition of antigens by single-domain antibody fragments: the superfluous luxury of paired domains. Trends Biochem Sci 26:230–235

    Article  PubMed  CAS  Google Scholar 

  27. Harmsen MM et al (2000) Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features. Mol Immunol 37:579–590

    Article  PubMed  CAS  Google Scholar 

  28. Keel MK, Songer JG (2007) The distribution and density of Clostridium difficile toxin receptors on the intestinal mucosa of neonatal pigs. Vet Pathol 44:814–822

    Article  PubMed  CAS  Google Scholar 

  29. Arbabi Ghahroudi M et al (1997) Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett 414:521–526

    Article  PubMed  CAS  Google Scholar 

  30. Kabat EA et al (eds) (1991) Sequences of proteins of immunological interest. US Department of Health and Human Services, US Public Health Service, Bethesda, MD

    Google Scholar 

  31. Salnikova MS et al (2008) Physical characterization of Clostridium difficile toxins and toxoids: effect of the formaldehyde crosslinking on thermal stability. J Pharm Sci 97:3735–3752

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Glenn Songer and Hien Trinh (Iowa State University) for providing us with purified C. difficile toxins and preparing the recombinant toxin fragments. The authors declare no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshid Tanha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hussack, G., Arbabi-Ghahroudi, M., MacKenzie, C.R., Tanha, J. (2012). Isolation and Characterization of Clostridium difficile Toxin-Specific Single-Domain Antibodies. In: Saerens, D., Muyldermans, S. (eds) Single Domain Antibodies. Methods in Molecular Biology, vol 911. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-968-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-968-6_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-967-9

  • Online ISBN: 978-1-61779-968-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics