Skip to main content

Discovery of Lamin B1 and Vimentin as Circulating Biomarkers for Early Hepatocellular Carcinoma

  • Protocol
  • First Online:
Liver Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 909))

Abstract

The recent advancements in proteomic technologies have reconstituted our research strategies over different type of liver diseases including hepatocellular carcinoma (HCC). Combined analyses on HCC proteome and clinicopathological data of patients have allowed identification of many promising biomarkers that can be further developed into noninvasive diagnostic assays for cancer surveillance. Capitalizing our established proteomic platform primarily based on two-dimensional polyacrylamide gel electrophoresis (2DE) and MALDI-TOF/TOF mass spectrometry, our groups have identified lamin B1 (LMNB1) and vimentin (VIM) as promising biomarkers for detection of early HCC. Protein levels of both biomarkers were significantly elevated in cancerous tissues when compared to the controls in disease-free and cirrhotic liver subjects. Further investigation of the circulating LMNB1 mRNA level in patients’ blood samples by standard PCR showed 76% sensitivity and 82% specificity for detection of early HCC. In parallel, an ELISA assay for measuring circulating vimentin level in patients’ serum samples could detect small HCC at 40.91% sensitivity and 87.5% specificity. The candidate biomarkers were evaluated with the diagnostic performance of α-fetoprotein (AFP) for HCC. In this article, we address the current protocols for HCC biomarker discovery, ranging from clinical sample preparation, 2DE proteomic profiling and informatics analysis, and assay development and clinical validation study. Focus is emphasized on the methods for sample preservation and low-abundance protein enrichment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hao K, Luk JM, Lee NP, Mao M, Zhang C, Ferguson MD, Lamb J, Dai H, Ng IO, Sham PC, Poon RT (2009) Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters. BMC Cancer 9:389

    Article  PubMed  Google Scholar 

  2. Spangenberg HC, Thimme R, Blum HE (2009) Targeted therapy for hepatocellular ­carcinoma. Nat Rev Gastroenterol Hepatol 6:423–432

    Article  PubMed  CAS  Google Scholar 

  3. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, Gupta S, Moore J, Wrobel MJ, Lerner J, Reich M, Chan JA, Glickman JN, Ikeda K, Hashimoto M, Watanabe G, Daidone MG, Roayaie S, Schwartz M, Thung S, Salvesen HB, Gabriel S, Mazzaferro V, Bruix J, Friedman SL, Kumada H, Llovet JM, Golub TR (2008) Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med 359:1995–2004

    Article  PubMed  CAS  Google Scholar 

  4. Laurent-Puig P, Legoix P, Bluteau O, Belghiti J, Franco D, Binot F, Monges G, Thomas G, Bioulac-Sage P, Zucman-Rossi J (2001) Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. Gastroenterology 120:1763–1773

    Article  PubMed  CAS  Google Scholar 

  5. Kaposi-Novak P, Libbrecht L, Woo HG, Lee Y-H, Sears NC, Coulouarn C, Conner EA, Factor VM, Roskams T, Thorgeirsson SS (2009) Central role of c-Myc during malignant conversion in human hepatocarcinogenesis. Cancer Res 69:2775–2782

    Article  PubMed  CAS  Google Scholar 

  6. Wang SM, Ooi LLPJ, Hui KM (2007) Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma. Clin Cancer Res 13:6275–6283

    Article  PubMed  CAS  Google Scholar 

  7. Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, Sham PC, Lam BY, Ferguson MD, Tokiwa G, Smith R, Leeson B, Beard R, Lamb JR, Lim L, Mao M, Dai H, Luk JM (2010) microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol 6:402

    Article  PubMed  Google Scholar 

  8. Sun S, Yi X, Poon RT, Yeung C, Day PJ, Luk JM (2009) A protein-based set of reference markers for liver tissues and hepatocellular carcinoma. BMC Cancer 9:309

    Article  PubMed  Google Scholar 

  9. Sun S, Day PJ, Lee NP, Luk JM (2009) Biomarkers for early detection of liver cancer: focus on clinical evaluation. Protein Pept Lett 16:473–478

    Article  PubMed  CAS  Google Scholar 

  10. Sun S, Lee NP, Poon RT, Fan ST, He QY, Lau GK, Luk JM (2007) Oncoproteomics of hepatocellular carcinoma: from cancer markers’ discovery to functional pathways. Liver Int 27:1021–1038

    Article  PubMed  CAS  Google Scholar 

  11. Luk JM, Lam BY, Lee NP, Ho DW, Sham PC, Chen L, Peng J, Leng X, Day PJ, Fan ST (2007) Artificial neural networks and decision tree model analysis of liver cancer proteomes. Biochem Biophys Res Commun 361:68–73

    Article  PubMed  CAS  Google Scholar 

  12. Luk JM, Su YC, Lam SC, Lee CK, Hu MY, He QY, Lau GK, Wong FW, Fan ST (2005) Proteomic identification of Ku70/Ku80 autoantigen recognized by monoclonal antibody against hepatocellular carcinoma. Proteomics 5:1980–1986

    Article  PubMed  CAS  Google Scholar 

  13. Lee NP, Leung KW, Cheung N, Lam BY, Xu MZ, Sham PC, Lau GK, Poon RT, Fan ST, Luk JM (2008) Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics 8:2136–2149

    Article  PubMed  CAS  Google Scholar 

  14. Lee NP, Chen L, Lin MC, Tsang FH, Yeung C, Poon RT, Peng J, Leng X, Beretta L, Sun S, Day PJ, Luk JM (2009) Proteomic expression signature distinguishes cancerous and nonmalignant tissues in hepatocellular carcinoma. J Proteome Res 8:1293–1303

    Article  PubMed  CAS  Google Scholar 

  15. Luk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, Che CM, Fan ST (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6:1049–1057

    Article  PubMed  CAS  Google Scholar 

  16. Yi X, Luk JM, Lee NP, Peng J, Leng X, Guan XY, Lau GK, Beretta L, Fan ST (2008) Association of mortalin (HSPA9) with liver cancer metastasis and prediction for early tumor recurrence. Mol Cell Proteomics 7:315–325

    PubMed  CAS  Google Scholar 

  17. Lu WJ, Lee NP, Fatima S, Luk JM (2009) Heat shock proteins in cancer: signaling pathways, tumor markers and molecular targets in liver malignancy. Protein Pept Lett 16:508–516

    Article  PubMed  CAS  Google Scholar 

  18. Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, Luk JM (2011) Induction of mutant p53-dependent apoptosis in human hepatocellular carcinoma by targeting stress protein mortalin. Int J Cancer 129: 1806–1814.

    Google Scholar 

  19. Lu WJ, Lee NP, Kaul SC, Lan F, Poon RT, Wadhwa R, Luk JM (2011) Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ 18:1046–1056

    Article  PubMed  CAS  Google Scholar 

  20. Chen L, Ho DW, Lee NP, Sun S, Lam B, Wong KF, Yi X, Lau GK, Ng EW, Poon TC, Lai PB, Cai Z, Peng J, Leng X, Poon RT, Luk JM (2010) Enhanced detection of early hepatocellular carcinoma by serum SELDI-TOF proteomic signature combined with alpha-fetoprotein marker. Ann Surg Oncol 17:2518–2525

    Article  PubMed  Google Scholar 

  21. Fukuda S, Itamoto T, Nakahara H, Kohashi T, Ohdan H, Hino H, Ochi M, Tashiro H, Asahara T (2005) Clinicopathologic features and prognostic factors of resected solitary small-sized hepatocellular carcinoma. Hepatogastroenterology 52:1163–1167

    PubMed  Google Scholar 

  22. Kikuchi LO, Paranagua-Vezozzo DC, Chagas AL, Mello ES, Alves VA, Farias AQ, Pietrobon R, Carrilho FJ (2009) Nodules less than 20 mm and vascular invasion are predictors of survival in small hepatocellular carcinoma. J Clin Gastroenterol 43:191–195

    Article  PubMed  Google Scholar 

  23. Lok AS, Sterling RK, Everhart JE, Wright EC, Hoefs JC, Di Bisceglie AM, Morgan TR, Kim HY, Lee WM, Bonkovsky HL, Dienstag JL (2010) Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology 138:493–502

    Article  PubMed  CAS  Google Scholar 

  24. Kim MJ (2011) Current limitations and potential breakthroughs for the early diagnosis of hepatocellular carcinoma. Gut Liver 5:15–21

    Article  PubMed  Google Scholar 

  25. Sun S, Poon RT, Lee NP, Yeung C, Chan KL, Ng IO, Day PJ, Luk JM (2010) Proteomics of hepatocellular carcinoma: serum vimentin as a surrogate marker for small tumors (<or =2 cm). J Proteome Res 9:1923–1930

    Article  PubMed  CAS  Google Scholar 

  26. Sun S, Xu MZ, Poon RT, Day PJ, Luk JM (2010) Circulating lamin B1 (LMNB1) biomarker detects early stages of liver cancer in patients. J Proteome Res 9:70–78

    Article  PubMed  CAS  Google Scholar 

  27. Hu MY, Lam CT, Liu KD, Xu Z, Fatima S, Su YC, Tsang F, Chen J, Pang JZ, Qin LX, Luk JM (2009) Proteomic identification of a monoclonal antibody recognizing caveolin-1 in hepatocellular carcinoma with metastatic potential. Protein Pept Lett 16:479–485

    Article  PubMed  CAS  Google Scholar 

  28. Liu LX, Lee NP, Chan VW, Xue W, Zender L, Zhang C, Mao M, Dai H, Wang XL, Xu MZ, Lee TK, Ng IO, Chen Y, Kung HF, Lowe SW, Poon RT, Wang JH, Luk JM (2009) Targeting cadherin-17 inactivates Wnt signaling and inhibits tumor growth in liver carcinoma. Hepatology 50:1453–1463

    Article  PubMed  CAS  Google Scholar 

  29. Luk JM, Wong KF (2006) Monoclonal antibodies as targeting and therapeutic agents: prospects for liver transplantation, hepatitis and hepatocellular carcinoma. Clin Exp Pharmacol Physiol 33:482–488

    Article  PubMed  CAS  Google Scholar 

  30. Tsang FH, Lee NP, Luk JM (2009) The use of small peptides in the diagnosis and treatment of hepatocellular carcinoma. Protein Pept Lett 16:530–538

    Article  PubMed  CAS  Google Scholar 

  31. Speers AE, Wu CC (2007) Proteomics of integral membrane proteins – theory and application. Chem Rev 107:3687–3714

    Article  PubMed  CAS  Google Scholar 

  32. Josic D, Clifton JG (2007) Mammalian plasma membrane proteomics. Proteomics 7:3010–3029

    Article  PubMed  CAS  Google Scholar 

  33. Rabilloud T, Adessi C, Giraudel A, Lunardi J (1997) Improvement of the solubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18:307–316

    Article  PubMed  CAS  Google Scholar 

  34. James GT (1978) Inactivation of the protease inhibitor phenylmethylsulfonyl fluoride in buffers. Anal Biochem 86:574–579

    Article  PubMed  CAS  Google Scholar 

  35. Xu MZ, Chan SW, Liu AM, Wong KF, Fan ST, Chen J, Poon RT, Zender L, Lowe SW, Hong W, Luk JM (2010) AXL receptor kinase is a mediator of YAP-dependent oncogenic functions in hepatocellular carcinoma. Oncogene 30:1229–1240

    Article  PubMed  Google Scholar 

  36. Wong KF, Luk JM, Cheng RH, Klickstein LB, Fan ST (2007) Characterization of two novel LPS-binding sites in leukocyte integrin betaA domain. FASEB J 21:3231–3239

    Article  PubMed  CAS  Google Scholar 

  37. Li C, Hong Y, Tan YX, Zhou H, Ai JH, Li SJ, Zhang L, Xia QC, Wu JR, Wang HY, Zeng R (2004) Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry. Mol Cell Proteomics 3:399–409

    Article  PubMed  CAS  Google Scholar 

  38. Ai J, Tan Y, Ying W, Hong Y, Liu S, Wu M, Qian X, Wang H (2006) Proteome analysis of hepatocellular carcinoma by laser capture microdissection. Proteomics 6:538–546

    Article  PubMed  CAS  Google Scholar 

  39. Guedj N, Dargere D, Degos F, Janneau JL, Vidaud D, Belghiti J, Bedossa P, Paradis V (2006) Global proteomic analysis of microdissected cirrhotic nodules reveals significant ­biomarkers associated with clonal expansion. Lab Invest 86:951–958

    Article  PubMed  CAS  Google Scholar 

  40. Chan JK, Thompson JW, Gill TA (1995) Quantitative determination of protamines by coomassie blue G assay. Anal Biochem 226:191–193

    Article  PubMed  CAS  Google Scholar 

  41. Nassiri M, Ramos S, Zohourian H, Vincek V, Morales AR, Nadji M (2008) Preservation of biomolecules in breast cancer tissue by a formalin-free histology system. BMC Clin Pathol 8:1

    Article  PubMed  Google Scholar 

  42. Espina V, Edmiston KH, Heiby M, Pierobon M, Sciro M, Merritt B, Banks S, Deng J, VanMeter AJ, Geho DH, Pastore L, Sennesh J, Petricoin EF III, Liotta LA (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7:1998–2018

    Article  PubMed  CAS  Google Scholar 

  43. Rountree CB, Van Kirk CA, You H, Ding W, Dang H, Vanguilder HD, Freeman WM (2010) Clinical application for the preservation of phospho-proteins through in-situ tissue stabilization. Proteome Sci 8:61

    Article  PubMed  CAS  Google Scholar 

  44. Svensson M, Boren M, Skold K, Falth M, Sjogren B, Andersson M, Svenningsson P, Andren PE (2009) Heat stabilization of the tissue proteome: a new technology for improved proteomics. J Proteome Res 8:974–981

    Article  PubMed  CAS  Google Scholar 

  45. Goodwin RJ, Lang AM, Allingham H, Boren M, Pitt AR (2010) Stopping the clock on proteomic degradation by heat treatment at the point of tissue excision. Proteomics 10:1751–1761

    Article  PubMed  CAS  Google Scholar 

  46. Robinson AA, Westbrook JA, English JA, Boren M, Dunn MJ (2009) Assessing the use of thermal treatment to preserve the intact proteomes of post-mortem heart and brain tissue. Proteomics 9:4433–4444

    Article  PubMed  CAS  Google Scholar 

  47. Scholz B, Skold K, Kultima K, Fernandez C, Waldemarson S, Savitski MM, Svensson M, Boren M, Stella R, Andren PE, Zubarev R, James P (2011) Impact of temperature dependent sampling procedures in proteomics and peptidomics – a characterization of the liver and pancreas post mortem degradome. Mol Cell Proteomics 10:M900229MCP200

    PubMed  Google Scholar 

  48. Rossbach U, Nilsson A, Falth M, Kultima K, Zhou Q, Hallberg M, Gordh T, Andren PE, Nyberg F (2009) A quantitative peptidomic analysis of peptides related to the endogenous opioid and tachykinin systems in nucleus accumbens of rats following naloxone-precipitated morphine withdrawal. J Proteome Res 8:1091–1098

    Article  PubMed  CAS  Google Scholar 

  49. Qian WJ, Jacobs JM, Liu T, Camp DG II, Smith RD (2006) Advances and challenges in liquid chromatography–mass spectrometry-based proteomics profiling for clinical applications. Mol Cell Proteomics 5:1727–1744

    Article  PubMed  CAS  Google Scholar 

  50. Rifai N, Gillette MA, Carr SA (2006) Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 24:971–983

    Article  PubMed  CAS  Google Scholar 

  51. Anderson NL, Anderson NG (2002) The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 1:845–867

    Article  PubMed  CAS  Google Scholar 

  52. Pieper R, Su Q, Gatlin CL, Huang ST, Anderson NL, Steiner S (2003) Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3:422–432

    Article  PubMed  CAS  Google Scholar 

  53. Brand J, Haslberger T, Zolg W, Pestlin G, Palme S (2006) Depletion efficiency and recovery of trace markers from a multiparameter immunodepletion column. Proteomics 6:3236–3242

    Article  PubMed  CAS  Google Scholar 

  54. Qian WJ, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X, Mottaz HM, Varnum SM, Camp DG II, Huang L, Fang X, Zhang WW, Smith RD (2008) Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol Cell Proteomics 7:1963–1973

    Article  PubMed  CAS  Google Scholar 

  55. Zhang H, Li XJ, Martin DB, Aebersold R (2003) Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 21:660–666

    Article  PubMed  CAS  Google Scholar 

  56. Liu T, Qian WJ, Strittmatter EF, Camp DG II, Anderson GA, Thrall BD, Smith RD (2004) High-throughput comparative proteome analysis using a quantitative cysteinyl-peptide enrichment technology. Anal Chem 76:5345–5353

    Article  PubMed  CAS  Google Scholar 

  57. Baumann S, Ceglarek U, Fiedler GM, Lembcke J, Leichtle A, Thiery J (2005) Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 51:973–980

    Article  PubMed  CAS  Google Scholar 

  58. Zhang L, Xie J, Wang X, Liu X, Tang X, Cao R, Hu W, Nie S, Fan C, Liang S (2005) Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics 5:4510–4524

    Article  PubMed  CAS  Google Scholar 

  59. Everberg H, Peterson R, Rak S, Tjerneld F, Emanuelsson C (2006) Aqueous two-phase partitioning for proteomic monitoring of cell surface biomarkers in human peripheral blood mononuclear cells. J Proteome Res 5:1168–1175

    Article  PubMed  CAS  Google Scholar 

  60. Kohnke PL, Mulligan SP, Christopherson RI (2009) Membrane proteomics for leukemia classification and drug target identification. Curr Opin Mol Ther 11:603–610

    PubMed  CAS  Google Scholar 

  61. Rahbar AM, Fenselau C (2004) Integration of Jacobson’s pellicle method into proteomic strategies for plasma membrane proteins. J Proteome Res 3:1267–1277

    Article  PubMed  CAS  Google Scholar 

  62. Zhang LJ, Wang XE, Peng X, Wei YJ, Cao R, Liu Z, Xiong JX, Yin XF, Ping C, Liang S (2006) Proteomic analysis of low-abundant integral plasma membrane proteins based on gels. Cell Mol Life Sci 63:1790–1804

    Article  PubMed  CAS  Google Scholar 

  63. Macher BA, Yen TY (2007) Proteins at membrane surfaces-a review of approaches. Mol Biosyst 3:705–713

    Article  PubMed  CAS  Google Scholar 

  64. Stasyk T, Huber LA (2004) Zooming in: fractionation strategies in proteomics. Proteomics 4:3704–3716

    Article  PubMed  CAS  Google Scholar 

  65. Tang X, Yi W, Munske GR, Adhikari DP, Zakharova NL, Bruce JE (2007) Profiling the membrane proteome of Shewanella oneidensis MR-1 with new affinity labeling probes. J Proteome Res 6:724–734

    Article  PubMed  CAS  Google Scholar 

  66. Scheurer SB, Rybak JN, Roesli C, Brunisholz RA, Potthast F, Schlapbach R, Neri D, Elia G (2005) Identification and relative quantification of membrane proteins by surface biotinylation and two-dimensional peptide mapping. Proteomics 5:2718–2728

    Article  PubMed  CAS  Google Scholar 

  67. Rybak JN, Ettorre A, Kaissling B, Giavazzi R, Neri D, Elia G (2005) In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat Methods 2:291–298

    Article  PubMed  CAS  Google Scholar 

  68. Lu B, McClatchy DB, Kim JY, Yates JR III (2008) Strategies for shotgun identification of integral membrane proteins by tandem mass spectrometry. Proteomics 8:3947–3955

    Article  PubMed  CAS  Google Scholar 

  69. Na K, Lee EY, Lee HJ, Kim KY, Lee H, Jeong SK, Jeong AS, Cho SY, Kim SA, Song SY, Kim KS, Cho SW, Kim H, Paik YK (2009) Human plasma carboxylesterase 1, a novel serologic biomarker candidate for hepatocellular carcinoma. Proteomics 9:3989–3999

    Article  PubMed  CAS  Google Scholar 

  70. Chaerkady R, Thuluvath PJ, Kim MS, Nalli A, Vivekanandan P, Simmers J, Torbenson M, Pandey A (2008) O Labeling for a quantitative proteomic analysis of glycoproteins in hepatocellular carcinoma. Clin Proteomics 4:137–155

    Article  PubMed  CAS  Google Scholar 

  71. Dai Z, Fan J, Liu Y, Zhou J, Bai D, Tan C, Guo K, Zhang Y, Zhao Y, Yang P (2007) Identification and analysis of alpha1,6-fucosylated proteins in human normal liver tissues by a target glycoproteomic approach. Electrophoresis 28:4382–4391

    Article  PubMed  CAS  Google Scholar 

  72. Xu Z, Zhou X, Lu H, Wu N, Zhao H, Zhang L, Zhang W, Liang YL, Wang L, Liu Y, Yang P, Zha X (2007) Comparative glycoproteomics based on lectins affinity capture of N-linked glycoproteins from human Chang liver cells and MHCC97-H cells. Proteomics 7:2358–2370

    Article  PubMed  CAS  Google Scholar 

  73. Wollscheid B, Bausch-Fluck D, Henderson C, O’Brien R, Bibel M, Schiess R, Aebersold R, Watts JD (2009) Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat Biotechnol 27:378–386

    Article  PubMed  CAS  Google Scholar 

  74. Cottingham K (2008) Antibodypedia seeks to answer the question: “how good is that antibody?”. J Proteome Res 7:4213

    Google Scholar 

  75. Bjorling E, Uhlen M (2008) Antibodypedia, a portal for sharing antibody and antigen validation data. Mol Cell Proteomics 7:2028–2037

    Article  PubMed  Google Scholar 

  76. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  77. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  78. Peterson GL (1979) Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100:201–220

    Article  PubMed  CAS  Google Scholar 

  79. Stoscheck CM (1990) Quantitation of protein. Methods Enzymol 182:50–68

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Luk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wong, KF., Luk, J.M. (2012). Discovery of Lamin B1 and Vimentin as Circulating Biomarkers for Early Hepatocellular Carcinoma. In: Josic, D., Hixson, D. (eds) Liver Proteomics. Methods in Molecular Biology, vol 909. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-959-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-959-4_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-958-7

  • Online ISBN: 978-1-61779-959-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics