Skip to main content

A Combination of Affinity Chromatography, 2D DIGE, and Mass Spectrometry to Analyze the Phosphoproteome of Liver Progenitor Cells

  • Protocol
  • First Online:
Liver Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 909))

  • 2139 Accesses

Abstract

Reversible protein phosphorylation is a ubiquitous posttranslational modification that regulates cellular signaling pathways in multiple biological processes. A comprehensive analysis of protein phosphorylation patterns can only be achieved by employing different complementary experimental strategies all aiming at selective enrichment of phosphorylated proteins/peptides. In this chapter, we describe a method that utilizes a phosphoprotein affinity chromatography (Qiagen) to isolate intact phosphoproteins. These are subsequently detected by difference in two-dimensional gel electrophoresis and identified by mass spectrometry techniques. Additional experiments using a specific stain for phosphoproteins demonstrated that phosphoprotein affinity column was an effective method for enriching phosphate-containing proteins. Further validating the method, this workflow was applied to probe changes in the activation patterns of intermediates involved in different signaling pathways, such as NDRG1 and stathmin, in liver progenitor cells (MLP-29) upon proteasome inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 94:855–860

    Article  PubMed  CAS  Google Scholar 

  2. Drexler HC, Risau W, Konerding MA (2000) Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 14:65–77

    PubMed  CAS  Google Scholar 

  3. Oikawa T, Sasaki T, Nakamura M, Shimamura M, Tanahashi N, Omura S, Tanaka K (1998) The proteasome is involved in angiogenesis. Biochem Biophys Res Commun 246:243–248

    Article  PubMed  CAS  Google Scholar 

  4. Ganten TM, Koschny R, Haas TL, Sykora J, Li-Weber M, Herzer K, Walczak H (2005) Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 42:588–597

    Article  PubMed  CAS  Google Scholar 

  5. Anan A, Baskin-Bey ES, Bronk SF, Werneburg NW, Shah VH, Gores GJ (2006) Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 43:335–344

    Article  PubMed  CAS  Google Scholar 

  6. Anan A, Baskin-Bey ES, Isomoto H, Mott JL, Bronk SF, Albrecht JH, Gores GJ (2006) Proteasome inhibition attenuates hepatic injury in the bile duct-ligated mouse. Am J Physiol Gastrointest Liver Physiol 291:G709–G716

    Article  PubMed  CAS  Google Scholar 

  7. Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT (2005) Mitochondrial-mediated disregulation of Ca2+ is a critical determinant of Velcade (PS-341/bortezomib) cytotoxicity in myeloma cell lines. Cancer Res 65:3828–3836

    Article  PubMed  CAS  Google Scholar 

  8. Poulaki V, Mitsiades CS, Kotoula V, Negri J, McMillin D, Miller JW, Mitsiades N (2007) The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Ophthalmol Vis Sci 48:4706–4719

    Article  PubMed  Google Scholar 

  9. Yang W, Monroe J, Zhang Y, George D, Bremer E, Li H (2006) Proteasome inhibition induces both pro- and anti-cell death pathways in prostate cancer cells. Cancer Lett 243:217–227

    Article  PubMed  CAS  Google Scholar 

  10. Goshe MB (2006) Characterizing phosphoproteins and phosphoproteomes using mass spectrometry. Brief Funct Genomic Proteomic 4:363–376

    Article  PubMed  CAS  Google Scholar 

  11. Mann M, Ong SE, Gronborg M, Steen H, Jensen ON, Pandey A (2002) Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20:261–268

    Article  PubMed  CAS  Google Scholar 

  12. Macek B, Mann M, Olsen JV (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49:199–221

    Article  PubMed  CAS  Google Scholar 

  13. Laugesen S, Messinese E, Hem S, Pichereaux C, Grat S, Ranjeva R, Rossignol M, Bono JJ (2006) Phosphoproteins analysis in plants: a proteomic approach. Phytochemistry 67:2208–2214

    Article  PubMed  CAS  Google Scholar 

  14. Makrantoni V, Antrobus R, Botting CH, Coote PJ (2005) Rapid enrichment and analysis of yeast phosphoproteins using affinity chromatography, 2D-PAGE and peptide mass fingerprinting. Yeast 22:401–414

    Article  PubMed  CAS  Google Scholar 

  15. Davis MA, Hinerfeld D, Joseph S, Hui YH, Huang NH, Leszyk J, Rutherford-Bethard J, Tam SW (2006) Proteomic analysis of rat liver phosphoproteins after treatment with protein kinase inhibitor H89 (N-(2-[p-bromocinnamylamino-]ethyl)-5-isoquinolinesulfonamide). J Pharmacol Exp Ther 318:589–595

    Article  PubMed  CAS  Google Scholar 

  16. Puente LG, Carriere JF, Kelly JF, Megeney LA (2004) Comparative analysis of phosphoprotein-enriched myocyte proteomes reveals widespread alterations during differentiation. FEBS Lett 574:138–144

    Article  PubMed  CAS  Google Scholar 

  17. Puente LG, Borris DJ, Carriere JF, Kelly JF, Megeney LA (2006) Identification of candidate regulators of embryonic stem cell differentiation by comparative phosphoprotein affinity profiling. Mol Cell Proteomics 5:57–67

    PubMed  CAS  Google Scholar 

  18. Herz C, Aumailley M, Schulte C, Schlotzer-Schrehardt U, Bruckner-Tuderman L, Has C (2006) Kindlin-1 is a phosphoprotein involved in regulation of polarity, proliferation, and motility of epidermal keratinocytes. J Biol Chem 281:36082–36090

    Article  PubMed  CAS  Google Scholar 

  19. Santamaria E, Mora MI, Munoz J, Sanchez-Quiles V, Fernandez-Irigoyen J, Prieto J, Corrales FJ (2009) Regulation of stathmin phosphorylation in mouse liver progenitor-29 cells during proteasome inhibition. Proteomics 9:4495–4506

    Article  PubMed  CAS  Google Scholar 

  20. Li Z, Dong X, Wang Z, Liu W, Deng N, Ding Y, Tang L, Hla T, Zeng R, Li L, Wu D (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7:399–404

    Article  PubMed  CAS  Google Scholar 

  21. Puente LG, Voisin S, Lee RE, Megeney LA (2006) Reconstructing the regulatory kinase pathways of myogenesis from phosphopeptide data. Mol Cell Proteomics 5:2244–2251

    Article  PubMed  CAS  Google Scholar 

  22. Klemm C, Otto S, Wolf C, Haseloff RF, Beyermann M, Krause E (2006) Evaluation of the titanium dioxide approach for MS analysis of phosphopeptides. J Mass Spectrom 41:1623–1632

    Article  PubMed  CAS  Google Scholar 

  23. Steinberg TH, Agnew BJ, Gee KR, Leung WY, Goodman T, Schulenberg B, Hendrickson J, Beechem JM, Haugland RP, Patton WF (2003) Global quantitative phosphoprotein analysis using multiplexed proteomics technology. Proteomics 3:1128–1144

    Article  PubMed  CAS  Google Scholar 

  24. Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 278:27251–27255

    Article  PubMed  CAS  Google Scholar 

  25. Tannu NS, Hemby SE (2006) Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling. Nat Protoc 1:1732–1742

    Article  PubMed  CAS  Google Scholar 

  26. Muller M, Morotti A, Ponzetto C (2002) Activation of NF-kappaB is essential for ­hepatocyte growth factor-mediated proliferation and tubulogenesis. Mol Cell Biol 22:1060–1072

    Article  PubMed  CAS  Google Scholar 

  27. Mattingly RR (2003) Mitogen-activated protein kinase signaling in drug-resistant neuroblastoma cells. Methods Mol Biol 218:71–83

    PubMed  CAS  Google Scholar 

  28. Van Hoof D, Munoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5:214–226

    Article  PubMed  Google Scholar 

  29. Boersema PJ, Raijmakers R, Lemeer S, Mohammed S, Heck AJ (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4:484–494

    Article  PubMed  CAS  Google Scholar 

  30. Leitner A, Lindner W (2009) Chemical tagging strategies for mass spectrometry-based phospho-proteomics. Methods Mol Biol 527:229–243, x

    Google Scholar 

  31. Boersema PJ, Foong LY, Ding VM, Lemeer S, van Breukelen B, Philp R, Boekhorst J, Snel B, den Hertog J, Choo AB, Heck AJ (2009) In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics 9:84–99

    PubMed  Google Scholar 

  32. Palmisano G, Thingholm TE (2010) Strategies for quantitation of phosphoproteomic data. Expert Rev Proteomics 7:439–456

    Article  PubMed  CAS  Google Scholar 

  33. Xie X, Feng S, Vuong H, Liu Y, Goodison S, Lubman DMA (2010) Comparative phosphoproteomic analysis of a human tumor metastasis model using a label-free quantitative approach. Electrophoresis 31:1842–1852

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This laboratory is member of the National Institute of Proteomics Facilities, Proteored. Parts of the work described here were supported by the agreement between FIMA and the “UTE project CIMA”; grants Plan Nacional I  +  D  +  I SAF2008-0154 from Ministerio de Ciencia e Innovación to FJC; ISCIII-RETIC RD06/0020 to MAA and FJC. We like to acknowledge technical contributions from Carmen Miqueo, María I. Mora, and Manuela Molina from Center for Applied Medical Research (CIMA, University of Navarra).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enrique Santamaría or Fernando J. Corrales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Santamaría, E., Sánchez-Quiles, V., Fernández-Irigoyen, J., Corrales, F.J. (2012). A Combination of Affinity Chromatography, 2D DIGE, and Mass Spectrometry to Analyze the Phosphoproteome of Liver Progenitor Cells. In: Josic, D., Hixson, D. (eds) Liver Proteomics. Methods in Molecular Biology, vol 909. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-959-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-959-4_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-958-7

  • Online ISBN: 978-1-61779-959-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics