Skip to main content

Temperature-Dependent Antibody Kinetics as a Tool in Antibody Lead Selection

  • Protocol
  • First Online:
Antibody Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 901))

Abstract

Antibody–antigen interactions can principally be classified into three different temperature-dependent kinetic rate profiles. The affinity K D can persist, decrease, or increase in the temperature gradient. Today, the impact of temperature-dependent antibody kinetics is recognized, especially as part of the development of best in class monoclonal antibodies. Here, a robust surface plasmon resonance-based protocol is presented, which describes a sensitive temperature-dependent kinetic measurement and evaluation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonard P, Hayes CJ, O’Kennedy R (2011) Rapid temperature-dependent antibody ranking using Biacore A100. Anal Biochem 409: 290–292

    Article  PubMed  CAS  Google Scholar 

  2. Roos H, Karlsson R, Nilshans H et al (1998) Thermodynamic analysis of protein interactions with biosensor technology. J Mol Recognit 11: 204–210

    Article  PubMed  CAS  Google Scholar 

  3. Young L, Jernigan RL, Covell DG (1994) A role for surface hydrophobicity in protein–protein recognition. Protein Sci 3:717–729

    Article  PubMed  CAS  Google Scholar 

  4. Willcox BE, Gao GF, Wyer JR et al (1999) TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10:357–365

    Article  PubMed  CAS  Google Scholar 

  5. Gabdoulline RR, Wade RC (2001) Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol 306:1139–1155

    Article  PubMed  CAS  Google Scholar 

  6. Wang Y, Shen BJ, Sebald W (1997) A mixed-charge pair in human interleukin 4 dominates high-affinity interaction with the receptor alpha chain. Proc Natl Acad Sci U S A 94:1657–1662

    Article  PubMed  CAS  Google Scholar 

  7. Stites WE (1997) Proteinminus signProtein interactions: interface structure, binding thermodynamics, and mutational analysis. Chem Rev 97:1233–1250

    Article  PubMed  CAS  Google Scholar 

  8. Selzer T, Schreiber G (1999) Predicting the rate enhancement of protein complex formation from the electrostatic energy of interaction. J Mol Biol 287:409–419

    Article  PubMed  CAS  Google Scholar 

  9. Sinha N, Smith-Gill SJ (2002) Electrostatics in protein binding and function. Curr Protein Pept Sci 3:601–614

    Article  PubMed  CAS  Google Scholar 

  10. Zeder-Lutz G, Zuber E, Witz J et al (1997) Thermodynamic analysis of antigen–antibody binding using biosensor measurements at different temperatures. Anal Biochem 246: 123–132

    Article  PubMed  CAS  Google Scholar 

  11. Pasqualucci L, Guglielmino R, Houldsworth J et al (2004) Expression of the AID protein in normal and neoplastic B cells. Blood 104: 3318–3325

    Article  PubMed  CAS  Google Scholar 

  12. Torres M, Fernandez-Fuentes N, Fiser A et al (2007) Exchanging murine and human immunoglobulin constant chains affects the kinetics and thermodynamics of antigen binding and chimeric antibody autoreactivity. PLoS One 2:e1310

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schräml .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Schräml, M., von Proff, L. (2012). Temperature-Dependent Antibody Kinetics as a Tool in Antibody Lead Selection. In: Proetzel, G., Ebersbach, H. (eds) Antibody Methods and Protocols. Methods in Molecular Biology, vol 901. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-931-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-931-0_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-930-3

  • Online ISBN: 978-1-61779-931-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics