Skip to main content

Artificial MicroRNAs for Plant Virus Resistance

  • Protocol
  • First Online:
Antiviral Resistance in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 894))

Abstract

RNA silencing is a natural plant defense system against foreign genetic elements including viruses. This natural antiviral mechanism has been adopted to develop virus-resistant plants by the expression of long stretches of viral sequences in perfectly paired double-stranded or stem-loop forms which, in turn, are processed into virus-specific small interfering RNAs (vsiRNAs) by the host’s RNA silencing machinery. Recently, another set of RNA silencing-related small RNAs, microRNAs (miRNAs), have been exploited to engineer virus resistance in plants. Expression of modified miRNA precursors results in the production of artificial miRNAs (amiRNAs) targeting viral RNA sequences. The amiRNA-mediated virus resistance is efficient and superior to the long viral RNA-based antiviral approaches in that properly selected amiRNA sequences would have little chance to target the host plant genes or to complement or recombine with other invading viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soosaar JL, Burch-Smith TM, Dinesh-Kumar SP (2005) Mechanisms of plant resistance to viruses. Nat Rev Microbiol 3:789–798

    Article  PubMed  Google Scholar 

  2. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  Google Scholar 

  3. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  PubMed  Google Scholar 

  4. Waterhouse PM, Graham MW, Wang MB (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964

    Article  PubMed  Google Scholar 

  5. Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  Google Scholar 

  6. Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    PubMed  Google Scholar 

  7. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  Google Scholar 

  8. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758

    Article  PubMed  Google Scholar 

  9. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333

    Article  PubMed  Google Scholar 

  10. Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  PubMed  Google Scholar 

  11. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  Google Scholar 

  12. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  PubMed  Google Scholar 

  13. Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  Google Scholar 

  14. Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed  Google Scholar 

  15. Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  PubMed  Google Scholar 

  16. Lin SS, Wu HW, Elena SF, Chen KC, Niu QW, Yeh SD et al (2009) Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 5:e1000312

    Article  PubMed  Google Scholar 

  17. Liu ZZ, Wang JL, Huang X, Xu WH, Liu ZM, Fang RX (2003) The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. Planta 216:824–833

    PubMed  Google Scholar 

  18. Horsch RB, Fry JE, Hoffman NL, Eichholz D, Rogers SG, Fraley RT (1985) A simple and general method for transforming genes into plants. Science 227:1229–1231

    Article  Google Scholar 

  19. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  20. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  Google Scholar 

  21. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18: 1134–1151

    Article  PubMed  Google Scholar 

  22. Anderson JM, Palukaitis P, Zaitlin M (1992) A defective replicase gene induces resistance to cucumber mosaic virus in transgenic tobacco plants. Proc Natl Acad Sci USA 89: 8759–8763

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the support of Natural Science Foundation of China (grant No. 30530500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongxiang Fang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Qu, J., Ye, J., Fang, R. (2012). Artificial MicroRNAs for Plant Virus Resistance. In: Watson, J., Wang, MB. (eds) Antiviral Resistance in Plants. Methods in Molecular Biology, vol 894. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-882-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-882-5_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-881-8

  • Online ISBN: 978-1-61779-882-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics