Skip to main content

Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Genotoxicity Analysis In Vitro and on Small Animal Models Ex Vivo and In Vivo

  • Protocol
  • First Online:
Prenatal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 891))

Abstract

Gene delivery by integrating vectors has the potential to cause genotoxicity in the host by insertional mutagenesis (IM). Previously, the risk of IM by replication incompetent retroviral vectors was believed to be small. However, the recent observation of leukaemic events due to gamma retroviral vector insertion and activation of the LMO-2 proto-oncogene in patients enrolled in the French and British gene therapy trials for X-SCID demonstrates the need to understand vector associated genotoxicity in greater detail. These findings have led to the development of in vitro, ex vivo, and in vivo assays designed to predict genotoxic risk and to further our mechanistic understanding of this process at the molecular level. In vitro assays include transformation of murine haematopoietic stem cells by integrating retroviral (RV) or lentiviral (LV) vectors and measurement of cell survival resulting from transformation due to integration mainly into the Evi1 oncogene. Ex vivo assays involve harvesting haematopoietic stem cells from mice followed by gene transfer and re-infusion of RV or LV infected cells to reconstitute the immune system. Insertional mutagenesis is then determined by analysis of clonally dominant populations of cells. The latter model has also been made highly sensitive using cells from mice predisposed to oncogenesis by lack of the P53 and Rb pathways. Our investigations on fetal gene therapy discovered a high incidence of liver tumour development that appears to be associated with vector insertions into cancer-related genes. Many genes involved in growth and differentiation are actively transcribed in early developmental and are therefore in an open chromatin configuration, which favours provirus insertion. Some of these genes are known oncogenes or anti-oncogenes and are not usually active during adulthood. We found that in utero injection of primate HIV-1, HR’SIN-cPPT-S-FIX-W does not result in oncogenesis as opposed to administration of non-primate equine infectious anaemia virus (EIAV), SMART 2 lentivirus vectors and, most recently, the non-primate pLIONhAATGFP (FIV) vector, which both give rise to high frequency hepatocellular carcinoma. The peculiar integration pattern into cancer-related genes observed in this model makes the fetal mouse a sensitive tool, not only to investigate long-term vector-mediated gene expression, but also vector safety in an in vivo system with minimal immunological interference. The identification of distinct differences in genotoxic outcome between the applied vector systems i.e. EIAV or FIV vectors versus HIV may indicate a particular biosafety profile of the HIV-1-based vector, which renders it potentially suitable for safe prenatal gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rohdewohld H, Weiher H, Reik W et al (1987) Retrovirus integration and chromatin structure: moloney murine leukemia proviral integration sites map near DNase I-hypersensitive sites. J Virol 61:336–343

    PubMed  CAS  Google Scholar 

  2. Wu X, Li Y, Crise B et al (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749–1751

    Article  PubMed  CAS  Google Scholar 

  3. Varmus HE, Padgett T, Heasley S et al (1977) Cellular functions are required for the synthesis and integration of avian sarcoma virus-specific DNA. Cell 11:307–319

    Article  PubMed  CAS  Google Scholar 

  4. Mitchell RS, Beitzel BF, Schroder AR et al (2004) Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLoS Biol 2:E234

    Article  PubMed  Google Scholar 

  5. Stocking C, Bergholz U, Friel J et al (1993) Distinct classes of factor-independent mutants can be isolated after retroviral mutagenesis of a human myeloid stem cell line. Growth Factors 8:197–209

    Article  PubMed  CAS  Google Scholar 

  6. King WMDP, Lobel LI, Goff SP et al (1985) Insertional mutagenesis of embryonal carcinoma cells by retroviruses. Science 228:554–558

    Article  PubMed  CAS  Google Scholar 

  7. Grosovsky AJ, Skandalis A, Hasegawa L et al (1993) Insertional inactivation of the tk locus in a human B lymphoblastoid cell line by a retroviral shuttle vector. Mutat Res 289:297–308

    Article  PubMed  CAS  Google Scholar 

  8. Themis M, May D, Coutelle C et al (2003) Mutational effects of retrovirus insertion on the genome of V79 cells by an attenuated retrovirus vector: implications for gene therapy. Gene Ther 10:1703–1711

    Article  PubMed  CAS  Google Scholar 

  9. Hacein-Bey-Abina S, Le Deist F, Carlier F et al (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    Article  PubMed  CAS  Google Scholar 

  10. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, Selz F, Hue C et al (2000) Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669–672

    Article  PubMed  CAS  Google Scholar 

  11. Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–419

    Article  PubMed  CAS  Google Scholar 

  12. Williams DA, Baum C (2003) Medicine. Gene therapy – new challenges ahead. Science 302:400–401

    Article  PubMed  CAS  Google Scholar 

  13. Howe SJ, Mansour MR, Schwarzwaelder K et al (2008) Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143–3150

    Google Scholar 

  14. Ott MG, Schmidt M, Schwarzwaelder K et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  PubMed  CAS  Google Scholar 

  15. Li Z, Dullmann J, Schiedlmeier B et al (2002) Murine leukemia induced by retroviral gene marking. Science 296:497

    Article  PubMed  CAS  Google Scholar 

  16. Baum C, von Kalle C, Staal FJ et al (2004) Chance or necessity? Insertional mutagenesis in gene therapy and its consequences. Mol Ther 9:5–13

    Article  PubMed  CAS  Google Scholar 

  17. Montini E, Cesana D, Schmidt M et al (2006) Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687–696

    Article  PubMed  CAS  Google Scholar 

  18. Nienhuis AW, Dunbar CE, Sorrentino BP (2006) Genotoxicity of retroviral integration in hematopoietic cells. Mol Ther 13:1031–1049

    Article  PubMed  CAS  Google Scholar 

  19. Baum C, Dullmann J, Li Z et al (2003) Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099–2114

    Article  PubMed  CAS  Google Scholar 

  20. Modlich U, Kustikova OS, Schmidt M et al (2005) Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 11:4235–4246

    Article  Google Scholar 

  21. Seggewiss R, Pittaluga S, Adler RL et al (2006) Acute myeloid leukemia is associated with retroviral gene transfer to hematopoietic progenitor cells in a rhesus macaque. Blood 107:3865–3867

    Article  PubMed  CAS  Google Scholar 

  22. Zychlinski D, Schambach A, Modlich U et al (2008) Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 16:718–725

    Google Scholar 

  23. Mazurier F, Gan OI, McKenzie JL et al (2004) Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103:545–552

    Article  PubMed  CAS  Google Scholar 

  24. Kustikova OS, Schiedlmeier B, Brugman et al (2009) Cell-intrinsic and vector-related properties cooperate to determine the incidence and consequences of insertional mutagenesis. Mol Ther 17:1537–1547

    Article  PubMed  CAS  Google Scholar 

  25. Zhang LH, Jenssen D (1991) Characterization of HAT- and HAsT-resistant HPRT mutant clones of V79 Chinese hamster cells. Mutat Res 263:151–158

    Article  PubMed  CAS  Google Scholar 

  26. Zhang LH, Vrieling H, van Zeeland AA et al (1992) Spectrum of spontaneously occurring mutations in the hprt gene of V79 Chinese hamster cells. J Mol Biol 223:627–635

    Article  PubMed  CAS  Google Scholar 

  27. Zhang LH, Jenssen D (1994) Studies on intrachromosomal recombination in SP5/V79 Chinese hamster cells upon exposure to different agents related to carcinogenesis. Carcinogenesis 15:2303–2310

    Article  PubMed  CAS  Google Scholar 

  28. Dahle J, Kvam E (2003) Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation. Cancer Res 63:1464–1469

    PubMed  CAS  Google Scholar 

  29. Dahle J, Noordhuis P, Stokke T et al (2005) Multiplex polymerase chain reaction analysis of UV-A- and UV-B-induced delayed and early mutations in V79 Chinese hamster cells. Photochem Photobiol 81:114–119

    Article  PubMed  CAS  Google Scholar 

  30. Jianhua Z, Lian X, Shuanlai Z et al (2006) DNA lesion and Hprt mutant frequency in rat lymphocytes and V79 Chinese hamster lung cells exposed to cadmium. J Occup Health 48:93–99

    Article  PubMed  Google Scholar 

  31. Bokhoven M, Stephen SL, Knight S et al (2009) Insertional gene activation by lentiviral and gammaretroviral vectors. J Virol 83:283–294

    Article  PubMed  CAS  Google Scholar 

  32. Goff SP (1987) Insertional mutagenesis to isolate genes. Methods Enzymol 151:489–502

    Article  PubMed  CAS  Google Scholar 

  33. Montini E, Cesana D, Schmidt M et al (2009) The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964–975

    Article  PubMed  CAS  Google Scholar 

  34. Waddington SN, Mitrophanous KA, Ellard FM, Buckley SM, Nivsarkar M, Lawrence L, Cook HT, Al-Allaf F, Bigger B, Kingsman SM, Coutelle C, Themis M (2003) Long-term transgene expression by administration of a lentivirus-based vector to the fetal circulation of immuno-competent mice. Gene Ther 10:1234–1240

    Article  PubMed  CAS  Google Scholar 

  35. Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771

    Article  PubMed  CAS  Google Scholar 

  36. Silver J, Keerikatte V (1989) Novel use of polymerase chain reaction to amplify cellular DNA adjacent to an integrated provirus. J Virol 63:1924–1928

    PubMed  CAS  Google Scholar 

  37. Schmidt M, Carbonaro DA, Speckmann C et al (2003) Clonality analysis after retroviral-mediated gene transfer to CD34+ cells from the cord blood of ADA-deficient SCID neonates. Nat Med 9:463–468

    Article  PubMed  CAS  Google Scholar 

  38. Akagi K, Suzuki T, Stephens RM et al (2004) RTCGD: retroviral tagged cancer gene database. Nucleic Acids Res 32:D523–D527

    Article  PubMed  CAS  Google Scholar 

  39. Modlich U, Bohne J, Schmidt M et al (2006) Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:2545–2553

    Article  PubMed  CAS  Google Scholar 

  40. Themis M, Waddington SN, Schmidt M et al (2005) Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Mol Ther 12:763–771

    Article  PubMed  CAS  Google Scholar 

  41. Dupont WD, Plummer WD Jr (1998) Power and sample size calculations for studies involving linear regression. Control Clin Trials 19:589–601

    Article  PubMed  CAS  Google Scholar 

  42. Sambrook J, Fritsch FE, Maniatis T (2001) Molecular Cloning: A Laboratory manual, ­second edition. Cold Spring Harbour Laboratory Press (1) Chapter 6. 6.23

  43. Ponce MR, Micol JL (1992) PCR amplification of long DNA fragments. Nucleic Acids Res 20:623

    Article  PubMed  CAS  Google Scholar 

  44. Schmidt M, Zickler P, Hoffmann G et al (2002) Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100:2737–2743

    Article  PubMed  CAS  Google Scholar 

  45. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Professors Charles Coutelle and Dr. Manfred Schmidt for advice and LAM PCR methodology, respectively, and Dr Brian Bigger and Emma Osenjindu for real-time PCR advice. This work was supported by the Faculty of Medicine of Imperial College London and by a Brunel University BRIEF award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Themis PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC.

About this protocol

Cite this protocol

Themis, M. (2012). Monitoring for Potential Adverse Effects of Prenatal Gene Therapy: Genotoxicity Analysis In Vitro and on Small Animal Models Ex Vivo and In Vivo. In: Coutelle, C., Waddington, S. (eds) Prenatal Gene Therapy. Methods in Molecular Biology, vol 891. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-873-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-873-3_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-872-6

  • Online ISBN: 978-1-61779-873-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics