Skip to main content

Gene Knockdown by Morpholino-Modified Oligonucleotides in the Zebrafish (Danio rerio) Model: Applications for Developmental Toxicology

  • Protocol
  • First Online:
Developmental Toxicology

Abstract

The zebrafish (Danio rerio) has long been used as a model for developmental biology, making it an excellent model to use also in developmental toxicology. The many advantages of zebrafish include their small size, prolific spawning, rapid development, and transparent embryos. They can be easily manipulated genetically through the use of transgenic technology and gene knockdown via morpholino-modified antisense oligonucleotides (MOs). Knocking down specific genes to assess their role in the response to toxicant exposure provides a way to further our knowledge of how developmental toxicants work on a molecular and mechanistic level while establishing a relationship between these molecular events and morphological, behavioral, and/or physiological effects (i.e., phenotypic anchoring).

In this chapter, we address important considerations for using MOs to study developmental toxicology in zebrafish embryos and provide a protocol for their use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish – emergence of a new model vertebrate. Nat Rev Genet 3:717–724

    Article  PubMed  CAS  Google Scholar 

  2. Linney E, Upchurch L, Donerly S (2004) Zebrafish as a neurotoxicological model. Neurotoxicol Teratol 26:709–718

    Article  PubMed  CAS  Google Scholar 

  3. Zon LI (1999) Zebrafish: a new model for human disease. Genome Res 9:99–100

    PubMed  CAS  Google Scholar 

  4. Zon LI, Peterson RT (2005) In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4:35–44

    Article  PubMed  CAS  Google Scholar 

  5. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26:216–220

    Article  PubMed  CAS  Google Scholar 

  6. Moulton JD, Yan YL (2008) Using morpholinos to control gene expression. In: Ausubel FM et al (eds) Curr Protoc Mol Biol Chapter 26, Unit 26 28

    Google Scholar 

  7. Flynt AS, Li N, Thatcher EJ, Solnica-Krezel L, Patton JG (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. Nat Genet 39:259–263

    Article  PubMed  CAS  Google Scholar 

  8. Timme-Laragy AR, Van Tiem LA, Linney EA, Di Giulio RT (2009) Antioxidant responses and NRF2 in synergistic developmental toxicity of PAHs in zebrafish. Toxicol Sci 109:217–227

    Article  PubMed  CAS  Google Scholar 

  9. Bill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC (2009) A primer for morpholino use in zebrafish. Zebrafish 6:69–77

    Article  PubMed  CAS  Google Scholar 

  10. Mathew LK, Sengupta SS, Ladu J, Andreasen EA, Tanguay RL (2008) Crosstalk between AHR and Wnt signaling through R-Spondin1 impairs tissue regeneration in zebrafish. FASEB J 22:3087–3096

    Article  PubMed  CAS  Google Scholar 

  11. Shestopalov IA, Sinha S, Chen JK (2007) Light-controlled gene silencing in zebrafish embryos. Nat Chem Biol 3:650–651

    Article  PubMed  CAS  Google Scholar 

  12. Ouyang X, Shestopalov IA, Sinha S, Zheng G, Pitt CL, Li WH, Olson AJ, Chen JK (2009) Versatile synthesis and rational design of caged morpholinos. J Am Chem Soc 131:13255–13269

    Article  PubMed  CAS  Google Scholar 

  13. Xiong KM, Peterson RE, Heideman W (2008) Aryl hydrocarbon receptor-mediated down-regulation of sox9b causes jaw malformation in zebrafish embryos. Mol Pharmacol 74:1544–1553

    Article  PubMed  CAS  Google Scholar 

  14. Postlethwait J, Amores A, Cresko W, Singer A, Yan YL (2004) Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481–490

    Article  PubMed  CAS  Google Scholar 

  15. Hahn ME, Karchner SI, Evans BR, Franks DG, Merson RR, Lapseritis JM (2006) Unexpected diversity of aryl hydrocarbon receptors in non-mammalian vertebrates: insights from comparative genomics. J Exp Zool 305:693–706

    Article  Google Scholar 

  16. Evans BR, Karchner SI, Franks DG, Hahn ME (2005) Duplicate aryl hydrocarbon receptor repressor genes (ahrr1 and ahrr2) in the zebrafish Danio rerio: structure, function, evolution, and AHR-dependent regulation in vivo. Arch Biochem Biophys 441:151–167

    Article  PubMed  CAS  Google Scholar 

  17. Jenny MJ, Karchner SI, Franks DG, Woodin BR, Stegeman JJ, Hahn ME (2009) Distinct roles of two zebrafish AHR repressors (AHRRa and AHRRb) in embryonic development and regulating the response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 110:426–441

    Article  PubMed  CAS  Google Scholar 

  18. Eisen JS, Smith JC (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135:1735–1743

    Article  PubMed  CAS  Google Scholar 

  19. Sumanas S, Larson JD (2002) Morpholino phosphorodiamidate oligonucleotides in zebrafish: a recipe for functional genomics? Brief Funct Genomic Proteomic 1:239–256

    Article  PubMed  CAS  Google Scholar 

  20. Ekker SC, Larson JD (2001) Morphant technology in model developmental systems. Genesis 30:89–93

    Article  PubMed  CAS  Google Scholar 

  21. Billiard SM, Timme-Laragy AR, Wassenberg DM, Cockman C, Di Giulio RT (2006) The role of the aryl hydrocarbon receptor pathway in mediating synergistic developmental toxicity of polycyclic aromatic hydrocarbons to zebrafish. Toxicol Sci 92:526–536

    Article  PubMed  CAS  Google Scholar 

  22. Carney SA, Peterson RE, Heideman W (2004) 2,3,7,8-Tetrachlorodibenzo-p-dioxin activation of the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator pathway causes developmental toxicity through a CYP1A-independent mechanism in zebrafish. Mol Pharmacol 66:512–521

    PubMed  CAS  Google Scholar 

  23. Draper BW, Morcos PA, Kimmel CB (2001) Inhibition of zebrafish fgf8 pre-mRNA splicing with morpholino oligos: a quantifiable method for gene knockdown. Genesis 30:154–156

    Article  PubMed  CAS  Google Scholar 

  24. Prasch AL, Teraoka H, Carney SA, Dong W, Hiraga T, Stegeman JJ, Heideman W, Peterson RE (2003) Aryl hydrocarbon receptor 2 mediates 2,3,7,8-tetrachlorodibenzo-p-dioxin developmental toxicity in zebrafish. Toxicol Sci 76:138–150

    Article  PubMed  CAS  Google Scholar 

  25. Morcos PA (2007) Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. Biochem Biophys Res Commun 358:521–527

    Article  PubMed  CAS  Google Scholar 

  26. Ekker SC (2004) Nonconventional antisense in zebrafish for functional genomics applications. Methods Cell Biol 77:121–136

    Article  PubMed  CAS  Google Scholar 

  27. Pase L, Lieschke GJ (2009) Validating microRNA target transcripts using zebrafish assays. In: Lieschke GJ, Oates AC, Kawakami K (eds) zebrafish, Methods in Molecular Biology. Humana, New York

    Google Scholar 

  28. Sallinen V, Kolehmainen J, Priyadarshini M, Toleikyte G, Chen YC, Panula P (2010) Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish. Neurobiol Dis 40:93–101

    Article  PubMed  CAS  Google Scholar 

  29. Prasch AL, Heideman W, Peterson RE (2004) ARNT2 is not required for TCDD developmental toxicity in zebrafish. Toxicol Sci 82:250–258

    Article  PubMed  CAS  Google Scholar 

  30. Kobayashi M, Itoh K, Suzuki T, Osanai H, Nishikawa K, Katoh Y, Takagi Y, Yamamoto M (2002) Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells 7:807–820

    Article  PubMed  CAS  Google Scholar 

  31. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC (2007) p53 activation by knockdown technologies. PLoS Genet 3:e78

    Article  PubMed  Google Scholar 

  32. Colman JR, Ramsdell JS (2003) The type B brevetoxin (PbTx-3) adversely affects development, cardiovascular function, and survival in Medaka (Oryzias latipes) embryos. Environ Health Perspect 111:1920–1925

    Article  PubMed  CAS  Google Scholar 

  33. Jonsson ME, Jenny MJ, Woodin BR, Hahn ME, Stegeman JJ (2007) Role of AHR2 in the expression of novel cytochrome P450 1 family genes, cell cycle genes, and morphological defects in developing zebra fish exposed to 3,3′,4,4′,5-pentachlorobiphenyl or 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 100:180–193

    Article  PubMed  Google Scholar 

  34. Jonsson ME, Franks DG, Woodin BR, Jenny MJ, Garrick RA, Behrendt L, Hahn ME, Stegeman JJ (2009) The tryptophan photoproduct 6-formylindolo[3,2-b]carbazole (FICZ) binds multiple AHRs and induces multiple CYP1 genes via AHR2 in zebrafish. Chem Biol Interact 181:447–454

    Article  PubMed  CAS  Google Scholar 

  35. Incardona JP, Carls MG, Teraoka H, Sloan CA, Collier TK, Scholz NL (2005) Aryl hydrocarbon receptor-independent toxicity of weathered crude oil during fish development. Environ Health Perspect 113:1755–1762

    Article  PubMed  CAS  Google Scholar 

  36. Incardona JP, Day HL, Collier TK, Scholz NL (2006) Developmental toxicity of 4-ring polycyclic aromatic hydrocarbons in zebrafish is differentially dependent on AH receptor isoforms and hepatic cytochrome P4501A metabolism. Toxicol Appl Pharmacol 217:308–321

    Article  PubMed  CAS  Google Scholar 

  37. Timme-Laragy AR, Noyes PD, Buhler DR, Di Giulio RT (2008) CYP1B1 knockdown does not alter synergistic developmental toxicity of polycyclic aromatic hydrocarbons in zebrafish (Danio rerio). Mar Environ Res 66:85–87

    Article  PubMed  CAS  Google Scholar 

  38. Prasch AL, Tanguay RL, Mehta V, Heideman W, Peterson RE (2006) Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1. Mol Pharmacol 69:776–787

    PubMed  CAS  Google Scholar 

  39. Grimes AC, Erwin KN, Stadt HA, Hunter GL, Gefroh HA, Tsai H-J, Kirby ML (2008) PCB126 exposure disrupts ZebraFish ventricular and branchial but not early neural crest development. Toxicol Sci 106:193–205

    Article  PubMed  CAS  Google Scholar 

  40. Shi X, Zhou B (2010) The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci 115:391–400

    Article  PubMed  CAS  Google Scholar 

  41. McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Mol Brain Res 141:128–137

    Article  PubMed  CAS  Google Scholar 

  42. Teraoka H, Kubota A, Dong W, Kawai Y, Yamazaki K, Mori C, Harada Y, Peterson RE, Hiraga T (2009) Role of the cyclooxygenase 2-thromboxane pathway in 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced decrease in mesencephalic vein blood flow in the zebrafish embryo. Toxicol Appl Pharmacol 234:33–40

    Article  PubMed  CAS  Google Scholar 

  43. Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y, Handa H (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Gale Clark and Brandy Joyce for fish care, Drs. Elwood Linney and Nicole Roy for microinjection training, and Bruce Woodin for imaging assistance.

All experiments were conducted using protocols approved by the WHOI IACUC.

This work was supported in part by National Institutes of Health grants F32ES017585 (AT-L), R01ES006272 and R01ES016366 (MEH) and by Walter A. and Hope Noyes Smith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alicia R. Timme-Laragy Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Timme-Laragy, A.R., Karchner, S.I., Hahn, M.E. (2012). Gene Knockdown by Morpholino-Modified Oligonucleotides in the Zebrafish (Danio rerio) Model: Applications for Developmental Toxicology. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics