Skip to main content

Methodological Approaches to Cytochrome P450 Profiling in Embryos

  • Protocol
  • First Online:
Developmental Toxicology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 889))

  • 2656 Accesses

Abstract

Cytochrome P450 enzymes (CYPs) are heme thiolate proteins essential for vertebrate development and also play important roles in toxicology as well as normal metabolic function. CYP enzymes catalyze the oxidative biotransformation of many endogenous and exogenous chemicals, including steroids and eicosanoids, and drugs and other xenobiotic toxicants. Many CYPs have known for their potential roles in development, and many chemicals that cause developmental abnormalities are substrates for CYPs. The roles and regulation of most xenobiotic metabolizing CYPs during development are unknown, impeding understanding of mechanisms of developmental toxicity. The zebrafish (Danio rerio) has become one of the premier models in vertebrate developmental biology, in large part because of the logistical advantages of rapid external development, high adult maintenance density, and significant (bio)technological tool availability. The increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of CYP gene regulation and function. Here, we present methods to examine CYP expression during early development in zebrafish, with an emphasis on developmental microarrays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen AL, O’Leary KA, Kasper CB (2002) Association of multiple developmental defects and embryonic lethality with loss of microsomal NADPH-cytochrome P450 oxidoreductase. J Biol Chem 277:6536–6541

    Article  PubMed  CAS  Google Scholar 

  2. Laue K, Janicke M, Plaster N, Sonntag C, Hammerschmidt M (2008) Restriction of retinoic acid activity by Cyp26b1 is required for proper timing and patterning of osteogenesis during zebrafish development. Development (Cambridge, England) 135:3775–3787

    Article  CAS  Google Scholar 

  3. White RJ, Nie Q, Lander AD, Schilling TF (2007) Complex regulation of cyp26a1 creates a robust retinoic acid gradient in the zebrafish embryo. PLoS Biol 5:e304

    Article  PubMed  Google Scholar 

  4. Uehara M, Yashiro K, Mamiya S, Nishino J, Chambon P, Dolle P, Sakai Y (2007) CYP26A1 and CYP26C1 cooperatively regulate anterior–posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Dev Biol 302:399–411

    Article  PubMed  CAS  Google Scholar 

  5. Hu MC, Hsu HJ, Guo IC, Chung BC (2004) Function of Cyp11a1 in animal models. Mol Cell Endocrinol 215:95–100

    Article  PubMed  CAS  Google Scholar 

  6. Otto DM, Henderson CJ, Carrie D, Davey M, Gundersen TE, Blomhoff R, Adams RH et al (2003) Identification of novel roles of the cytochrome p450 system in early embryogenesis: effects on vasculogenesis and retinoic acid homeostasis. Mol Cell Biol 23:6103–6116

    Article  PubMed  CAS  Google Scholar 

  7. Bair SR, Mellon SH (2004) Deletion of the mouse P450c17 gene causes early embryonic lethality. Mol Cell Biol 24:5383–5390

    Article  PubMed  CAS  Google Scholar 

  8. Stoilov I, Jansson I, Sarfarazi M, Schenkman JB (2001) Roles of cytochrome p450 in development. Drug Metab Drug Interact 18:33–55

    Article  CAS  Google Scholar 

  9. Alsop D, Vijayan MM (2009) Molecular programming of the corticosteroid stress axis during zebrafish development. Comp Biochem Physiol A: Mol Integr Physiol 153:49–54

    Article  Google Scholar 

  10. Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2005) Expression patterns of mouse and human CYP orthologs (families 1–4) during development and in different adult tissues. Arch Biochem Biophys 436:50–61

    Article  PubMed  CAS  Google Scholar 

  11. Hines RN (2007) Ontogeny of human hepatic cytochromes P450. J Biochem Mol Toxicol 21:169–175

    Article  PubMed  CAS  Google Scholar 

  12. Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev 6:947–960

    Article  CAS  Google Scholar 

  13. Goldstone JV, Hamdoun A, Cole BJ, Howard-Ashby M, Nebert DW, Scally M, Dean M et al (2006) The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 300:366–384

    Article  PubMed  CAS  Google Scholar 

  14. Hernandez RE, Putzke AP, Myers JP, Margaretha L, Moens CB (2007) Cyp26 enzymes generate the retinoic acid response pattern necessary for hindbrain development. Development (Cambridge, England) 134:177–187

    Article  CAS  Google Scholar 

  15. Stoilov I (2001) Cytochrome P450s: coupling development and environment. Trends Genet 17:629–632

    Article  PubMed  CAS  Google Scholar 

  16. Rezen T, Contreras JA, Rozman D (2007) Functional genomics approaches to studies of the cytochrome P450 superfamily. Drug Metab Rev 39:389–399

    Article  PubMed  CAS  Google Scholar 

  17. Choudhary D, Jansson I, Schenkman JB, Sarfarazi M, Stoilov I (2003) Comparative expression profiling of 40 mouse cytochrome P450 genes in embryonic and adult tissues. Arch Biochem Biophys 414:91–100

    Article  PubMed  CAS  Google Scholar 

  18. Goldstone JV, McArthur AG, Kubota A, Zanette J, Parente T, Jonsson ME, Nelson DR et al (2010) Identification and developmental expression of the full complement of Cytochrome P450 genes in zebrafish. BMC Genomics 11:643

    Article  PubMed  Google Scholar 

  19. Fishman MC (2001) Genomics. Zebrafish—the canonical vertebrate. Science 294:1290–1291

    Article  PubMed  CAS  Google Scholar 

  20. Thisse B, Heyer V, Lux A, Alunni V, Degrave A, Seiliez I, Kirchner J et al (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell Biol 77:505–519

    Article  PubMed  CAS  Google Scholar 

  21. Stegeman JJ, Goldstone JV, Hahn ME (2010) Perspectives on zebrafish as a model in environmental toxicology. In: Perry SF, Ekker M, Farrell AP, Brauner CJ (eds) zebrafish. Elsevier, San Diego, CA

    Google Scholar 

  22. Xu W, Bak S, Decker A, Paquette SM, Feyereisen R, Galbraith DW (2001) Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272:61–74

    Article  PubMed  CAS  Google Scholar 

  23. Narusaka Y, Narusaka M, Seki M, Umezawa T, Ishida J, Nakajima M, Enju A et al (2004) Crosstalk in the responses to abiotic and biotic stresses in Arabidopsis: analysis of gene expression in cytochrome P450 gene superfamily by cDNA microarray. Plant Mol Biol 55:327–342

    Article  PubMed  CAS  Google Scholar 

  24. Chou C-C, Chen C-H, Lee T-T, Peck K (2004) Optimization of probe length and the number of probes per gene for optimal microarray analysis of gene expression. Nucleic Acids Res 32:e99

    Article  PubMed  Google Scholar 

  25. Jang JS, Simon VA, Feddersen RM, Rakhshan F, Schultz DA, Zschunke MA, Lingle WL et al (2011) Quantitative miRNA expression analysis using fluidigm microfluidics dynamic arrays. BMC Genomics 12:144

    Article  PubMed  CAS  Google Scholar 

  26. Dixon JM, Lubomirski M, Amaratunga D, Morrison TB, Brenan CJ, Ilyin SE (2009) Nanoliter high-throughput RT-qPCR: a statistical analysis and assessment. BioTechniques 46:ii–viii

    Article  PubMed  Google Scholar 

  27. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene, OR

    Google Scholar 

  28. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18

    Article  PubMed  CAS  Google Scholar 

  29. Goldstone HM, Stegeman JJ (2006) A revised evolutionary history of the CYP1A subfamily: gene duplication, gene conversion, and positive selection. J Mol Evol 62:708–717

    Article  PubMed  CAS  Google Scholar 

  30. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  31. Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M et al (2004) Universal reference RNA as a standard for microarray experiments. BMC Genomics 5:20

    Article  PubMed  Google Scholar 

  32. Schadt EE, Li C, Ellis B, Wong WH (2001) Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem (Suppl 37):120–125

    Google Scholar 

  33. Schadt EE, Li C, Su C, Wong WH (2000) Analyzing high-density oligonucleotide gene expression array data. J Cell Biochem 80: 192–202

    Article  PubMed  CAS  Google Scholar 

  34. Li C, Wong WH (2001) Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci U S A 98:31–36

    Article  PubMed  CAS  Google Scholar 

  35. Aryee MJ, Gutierrez-Pabello JA, Kramnik I, Maiti T, Quackenbush J (2009) An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinform 10:409

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01ES015912 and P42ES007381 (Superfund Basic Research Program at Boston University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jared V. Goldstone Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Goldstone, J.V., Stegeman, J.J. (2012). Methodological Approaches to Cytochrome P450 Profiling in Embryos. In: Harris, C., Hansen, J. (eds) Developmental Toxicology. Methods in Molecular Biology, vol 889. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-867-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-867-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-866-5

  • Online ISBN: 978-1-61779-867-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics