Skip to main content

In Vitro Biochemical Assays to Monitor Rhodopsin Function

  • Protocol
  • First Online:
Retinal Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 884))

Abstract

Rhodopsin is the dim-light photoreceptor responsible for initiation of the visual transduction cascade. In the dark its activity is very low, while light activation catalyzes the activation of its G-protein transducin. The first step in resetting rhodopsin and the phototransduction cascade involves the phosphorylation of light-active rhodopsin by rhodopsin kinase. Here, we describe assays to monitor the function of rhodopsin or rhodopsin mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeitz C et al (2009) Genotyping microarray for CSNB-associated genes. Invest Ophthalmol Vis Sci 50:5919–5926

    Article  PubMed  Google Scholar 

  2. Wright AF et al (2010) Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 11:273–284

    Article  PubMed  CAS  Google Scholar 

  3. den Hollander AI et al (2008) Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res 27:391–419

    Article  Google Scholar 

  4. Robinson PR (2000) Assays for detection of constitutively active opsins. Methods Enzymol 315:207–218

    Article  PubMed  CAS  Google Scholar 

  5. Robinson PR et al (1994) Opsins with mutations at the site of chromophore attachment constitutively activate transducin but are not phosphorylated by rhodopsin kinase. Proc Natl Acad Sci USA 91:5411–5415

    Article  PubMed  CAS  Google Scholar 

  6. Mendez A et al (2000) Rapid and reproducible deactivation of rhodopsin requires multiple phosphorylation sites. Neuron 28:153–164

    Article  PubMed  CAS  Google Scholar 

  7. Shi GW et al (2005) Light causes phosphorylation of nonactivated visual pigments in intact mouse rod photoreceptor cells. J Biol Chem 280:41184–41191

    Article  PubMed  CAS  Google Scholar 

  8. Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444

    Article  PubMed  CAS  Google Scholar 

  9. Hong K, Hubbell WL (1972) Preparation and properties of phospholipid bilayers containing rhodopsin. Proc Natl Acad Sci USA 69:2617–2621

    Article  PubMed  CAS  Google Scholar 

  10. Oprian DD et al (1987) Expression of a synthetic bovine rhodopsin gene in monkey kidney cells. Proc Natl Acad Sci USA 84:8874–8878

    Article  PubMed  CAS  Google Scholar 

  11. Zeitz C et al (2008) Identification and functional characterization of a novel rhodopsin mutation associated with autosomal dominant CSNB. Invest Ophthalmol Vis Sci 49:4105–4114

    Article  PubMed  Google Scholar 

  12. Buczylko J, Palczewski K (1993) Purification of arrestin from bovine retinas. Methods Neurosci 15:226–236

    Google Scholar 

  13. Lorenz W et al (1991) The receptor kinase family: primary structure of rhodopsin kinase reveals similarities to the beta-adrenergic receptor kinase. Proc Natl Acad Sci USA 88:8715–8719

    Article  PubMed  CAS  Google Scholar 

  14. Litman BJ (1982) Purification of rhodopsin by concanavalin A affinity chromatography. Methods Enzymol 81:150–153

    Article  PubMed  CAS  Google Scholar 

  15. Aveldano MI (1995) Phospholipid solubilization during detergent extraction of rhodopsin from photoreceptor disk membranes. Arch Biochem Biophys 324:331–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alecia K. Gross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sammons, J., Gross, A.K. (2012). In Vitro Biochemical Assays to Monitor Rhodopsin Function. In: Wang, SZ. (eds) Retinal Development. Methods in Molecular Biology, vol 884. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-848-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-848-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-847-4

  • Online ISBN: 978-1-61779-848-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics